IBM® Rational® DOORS

The DXL Reference Manual

IBM Rational DOORS
DXL Reference Manual
Release 9.7.0

Before using this information, be sure to read the general information under the "Notices" chapter on page 967.

This edition applies to version 9.7.0 of IBM Rational DOORS and to all subsequent releases and modifications until otherwise
indicated in new editions.

© Copyright IBM Corporation 1993, 2019
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

DXL Reference Manual iii

iv. DXL Reference Manual

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Table of Contents

Aboutthismanual................, 1
Typographical CONVENHONS u et ettt et ettt et 1
Related documentation.o\ttt 2
Introduction. i i, 3
Developing DXL programsottt 3
Browsing the DXL Ibrary 5
Localizing DXLo 6
Language fundamentals 7
Lexical CONVENTIONS . .\ v\ttt ettt e e e e e e e et ettt ettt et et 10
(703 0] 725 o - 12
LN tifiers © ottt e e e e 14
o T PP 15
DeClarations v ot 15
BXPIessIONS. . ..o 18
N33 '3 o Y PP 20
Basic fUNCHOMNS .« . o\ttt s 24

New in DXL for Rational DOORS 9.7.0 29

Symbol character Mappinig.ottt 29

New in DXL for Rational DOORS 9.6.1 31

Object Management functions.oouviiiiii ... 31
Module Propertiesttt 32
Dialog box functions 32
Display control funiCONS v v vttt 32
OLE ODJECTS « .« vt et e 33
General fUNCHONSo 33
OSLC DXL SEIVICES .« .o v vttt i ittt i35
TIMEL. . oo 036

New in DXL for Rational DOORS 96.................... 39

Operating system INterface.t 39
Mini database explorer........... 039
Modules.o 40
History. . oo 40
Dialog box functions: common element OPerations.uuut e enaeeeaeaa. 41
Display control: COIUMNSo vttt e e 41
Display control: Layout DXLot 42
HTTP Server. . ..o e 42

DXL Reference Manual

Vi

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

DXL Reference Manual

New in DXL for Rational DOORS 9.5 43
Embedded OLE objects and the OLE clipboard, 43
OSLC Link DISCOVELY . . oottt ettt e e e e e e e e e e e e e e e 44
Database PrOPELtieso vttt et e 45
Rational Ditectory Server o 48
New in DXL for Rational DOORS 9.4 51
Attribute definItlons. 51
ArIbULE TYPES . . oo oo 52
Rich text StrNgs . .. oo oot 53
New in DXL for Rational DOORS 9.3 55
Converting a symbol character to Unicode ... i i i i 55
Dialog box functions. o e 56
Operations ON tYPE SLING . . . vttt ettt ettt ettt et 56
Embedded OLE objects and the OLE clipboard oo .. 58
OLE information functionst 58
DiSCUSSIONS oottt 59
RIFID .o 62
Rational DOORS URLSso o e 62
FIIters « oo 63
Compound Filters 65
Localizing DXL 66
Finding links.o 67
LNKS . oo 69
New in DXL for Rational DOORS 9.2 71
Additional authentication it 71
Dialog box updateso 72
INEW CONMSLANES « . 2 v vttt et ettt e ettt e e ettt e e e e e et 73
Partitions updates 74
Requirements Interchange Format (RIF).o i 75
New in DXL for Rational DOORS 9.1 85
Regular BXPressions 85
New in DXL for Rational DOORS 9.0 87
DASCUSSIONS .« . oottt 87
DiaSCUSSION TYPES. . oo oo vttt ettt 87
ProOpertieso 83
Tterators ... oo 90
OPEIAtiONS . . oottt ettt 92
THIGEOIS. o oottt 94
Example 95
DeSCIIPHONS . ettt 97
View DesCriptionsottt 97

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Attribute Type Descriptions i 97
Attribute Definition DesCiptions uuuu e 99
Filteting. . ..o 100
HTIML . 100
HTML Control. 101
HTML Edit Control.o e 111
Miscellaneouso o 113
Fundamental types and functions. 115
Operations on all tyPes.t 115
Operations on type bool 117
Operations on type char. 118
Operations ON tYPEINL . . o oottt ettt ettt ettt 121
Operations on type realottt 124
Operations ON tYPE SLIING. . . oo vttt ettt et ettt e 128
General language facilities 135
Files and streams.o 135
Configuration file ACCESSttt 143
Dates . . 149
SKIP LISES .« oo ettt 156
Regular expressions 160
Textbuffers. 165
ALTAYS .« oot 174
Operating systeminterface 179
Operating system commands.ottt 179
WANAOWS TEGISTIY . ..ottt e 186
Interprocess commuNICAtIONSttt 189
System clipboard functions 192
Customizing Rational DOORS.. 195
Colof SChEMES. . .. 195
Database Explorer Options.ttt 197
Mini database exXplorer. o 200
Locales. . ..o 201
Codepages. . ..o 207
Message of the dayo 211
Database Properties o 212
Rational DOORS databaseaccess 215
Database Propertiest 215
Group and user manipulation 232
Group and USer MANAZEMECIL. « ..ottt t ettt ettt ettt ettt ettt ettt 240
LDAD . 250
LDAP Configurationooiiiiit ittt 252

DXL Reference Manual

vii

viii

Chapter 16

Chapter 17

Chapter 18

Chapter 19

DXL Reference Manual

LDAP server information i 254
LDAP data configurationooiiiii i 258
Rational Ditectory Server o 262

Rational DOORS hierarchy 267

About the Rational DOORS hierarchy. 267
Item access controls. 268
Hierarchy clipboardo 269
Hierarchy information. o 272
Hierarchy manipulation. 276
Jtems. . 278
Folders ... 281
PrOJECES. « oottt 284
Looping Within Projects.t 289

Modules.ttt sttt e e et et et 291

Module access CONIOISottt 291
Module refereniCesot 292
Module information. 295
Module manipulation.o 299
Module display Statettt 304
Baselines.o 307
Baseline Set Definition 315
Baseline Sets. 324
History . ..o e 333
Descriptive modules 343
Recently opened modules 346
Module Propertiesot 348
Electronic Signatures 353
SIgNALULE LYPES .« oo v v e ettt ettt et 353
Controlling Electronic Signature ACLo 353
Electronic Signature Data Manipulation. 357
Examples 362

Objectsc i e 371

ADBOUL ODJECES. . . oottt 3T
ODbject 2CCESS CONLLOIS . . ittt 371
Finding objects. . ..ottt 373
CULLENT ODJECT .« v v vttt et ettt e e e e e 378
Navigation from an objectt 379
ODbject MANAGEMENL. © . . ettt ettt ettt et ettt ettt 382
Information about objects. 386
Selecting ObJECts. . . oottt 388
Object Searchingt 390
Miscellaneous object fUnCHONSt 391

Chapter 20

Chapter 21

Chapter 22

Chapter 23

LiNKS. . . ottt it e e e e e e 395

About links and link module desctiptors. 00395
Link creation. . ..ottt 2223906
Link access CONtrol. . ..ottt 02396
Finding links oo 397
Versioned HnKS . ..ottt 403
Link management.t 400
Default link module i 412
LSOt . o v vt ettt e e 412
External Links. 415
OSLC Link DISCOVELY .. oo oottt ettt 420
Rational DOORS URLS. . . oottt ettt e e e e e e e e e e e e 422

Attributes e e e e 431

AtrIDULE VAIUES. . o ot e e 431
Attribute value access CONLIOIS. . ..o vttt e 438
Multi-value enumerated attributes.ot e 439
Attribute definitionsottt 441
Attribute definition aCCESS CONTIOIS . . o v vttt e e e e e et et et e et 452
AIDULE TYPES .« o oot 454
Attribute type aCCess CONTIOIS\ttt 460
Attribute type manipulation. 401
DXL attribute . . .ottt e 467
Accesscontrols i i 471
CoNtrolliNg ACCESS. . . oo vttt ettt ettt 471
LOCKING . . 480
Example programs 481

Dialogboxest i 485

Lcons . 485
Message bOXES 488
Dialog box functions 491
Dialog box elements. 503
Common element OPELationS.ttt ettt ettt et 503
Simple elements for dialog boxes 527
Choice dialog box elementst 542
View Clements.o 547
Text editor €lements. 555
Buttons 558
CaANVASES .« . oottt ettt 562
COMPIEX CANVASES. « . .ot e e ettt et ettt et et e e ettt 576
TOOIDALS . .o 587
COlOLS vt 592
Simple placement 598
Constrained placement. o 601
Progress Dar 607

DXL Reference Manual

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29

DXL Reference Manual

DBE £eSIZING . . .o\ 610

HTML CONtrol ... 611
HTML Edit Control 621
Templates i i i e e 623
Template fUnCtions 623
Template eXPressiOnsttt 624
Rational DOORS window control 627
The DXL Library and Addins menus. 627
Module status bars. e 629
Rational DOORS built-in windows 630
Module MENUSot 632
Displaycontrol it 647
FIIters « oo 647
Compound flters.t 658
Filtering on multi-valued attributes. o 662
Sorting modules. 663
VWS Lt 667
VIeW aCCESS CONLIOLS . ..ottt ittt e et 678
View defInitions.o oottt 680
COlUMNS .+ oot 690
Scrolling functions.o e 699
Layout DXL, ... 700
Partitions. 707
Partition CONCEPLS . ..o vttt 707
Partition definition management. i i 707
Partition definition CONENtSottt 710
Partition Management ettt ettt e 716
Partition information. 719
Partition aCCess.ot 724
Requirements Interchange Format (RIF) 727
RIE @XPOIt o v vt e ettt e 727
RIF IMPOIt. . oo 728
RIFID .o 729
MErge oot 730
RIF definition. . ..o oottt 730
Examples 733
OLEobjectscoiiiiiii it iiiiienns 739
Embedded OLE objects and the OLE clipboard o ... 739
OLE information functionst 750
Picture object SuppOrt.o 757

Chapter 30

Chapter 31

Chapter 32

Chapter 33

Chapter 34

Chapter 35

Chapter 36

Automation cHent SUPPOTt.o 768
Controlling Rational DOORS from applications that support automation 773
Triggerst et s 777
Introduction to trggers 777
THIGEEL CONSTANES . .o v vttt ettt ettt et et ettt ettt 781
Trigger definition 782
Trigger Manipulationttt 785
Drag-and-drop trigger funCtOnso vttt 795
Page setupfunctionst 807
Page attributes Status 807
Page dimensions 808
Document attributes.o oot 811
Page setup information. e 814
Page setup management. 817

Table CONCEPLottt 819
Table CONSANTS .« . oottt ettt e e e et e et e e e e e e e e 819
Table MANAZEIMCIIT . . . oo\ttt ettt e e e e e e e e e e 820
Table manipulation. 824
Table attributes. 832
Richtext............. . i 835
Rich teXt ProCessinngo oottt 835
Rich text StrNgso oot e 842
Enhanced character SUppoOrtottt 854
Importing rich text. 857
Diagnostic Permsot 858

SpellingChecker.ttt iiennnnn 863

Constants and general functions i i 863
Language and Grammar. ittt 872
Spelling Dictionary 881
Miscellaneous Spelling 884
Spelling\Dictionaty EXamples.ottt 886
Database Integrity Checker 889
Database Integrity TYPES oottt 889
Database Integrity Perms. 890
Discussions. iiiiiiiaa 899
Discussion TYPEsottt 899
Properties 899

DXL Reference Manual

Xi

Xii

Chapter 37

Chapter 38

Chapter 39

DXL Reference Manual

Tterators . ..o o 902
OPEIAtiONS . . oottt ettt 903
THIGEELS. « ottt 907
Discussions access CONLrols.o it 908
Example 910
Generalfunctions.ol 913
Errorhandling o 913
Archive and eStOre oo i 916
Checksum validation 929
LOCKING. © 933
HTML functions ooouo it 940
HTTP SCIVEr ..ottt e e 942
Asynchronous HTTP feqUESESo v v vttt e e e e e e e e 947
OSLC DXL SEIVICES « .« vt ettt ettt ettt et e et e et e e 951
Broadcast Messaginig oottt 953
Converting a symbol character to Unicodeooo i i 954
TIMEL oot 955
Symbol character mapping 958
Character codes and theirmeanings.................. 961
Notices i 967
Index ... e 969

About this manual

Welcome to version 9.6.1 of IBM® Rational® DOORS®, a powerful tool that helps you to capture, track and manage your
user requirements.

DXL (DOORS eXtension Language) is a scripting language specially developed for Rational DOORS. DXL is used in
many parts of Rational DOORS to provide key featutes, such as file format importers and exporters, impact and traceability
analysis and inter-module linking tools. DXI. can also be used to develop larger add-on packages such as CASE tool
interfaces and project management tools. To the end user, DXL developed applications appear as seamless extensions to
the graphical user interface. This capability to extend or customize Rational DOORS is available to users who choose to
develop their own DXL scripts.

The DXL language is for the more technical user, who sets up programs for the end-user to apply. DXL takes many of its
fundamental features from C and C++. Anyone who has written programs in these or similar programming languages
should be able to use DXL

This book is a reference manual for DXL for version 9.6.1 of Rational DOORS. Refer to it if you wish to automate simple
or complex repetitive tasks, or customize your users’ Rational DOORS environment. It assumes that you know how to
write C or C++ programs.

Typographical conventions

The following typographical conventions are used in this manual:

Typeface or Symbol [Meaning

Bold Important items, and items that you can select, including buttons and menus:
“Click Yes to continue”.

1talics Book titles.

Courier Commands, files, and directories; computer output: “Edit your
.properties file”.

> A menu choice: “Select File > Open”. This means select the File menu, and
then select the Open option.

Each function or macro is first introduced by name, followed by a declaration or the syntax, and a short description of the
operation it performs. These are supplemented by examples where appropriate.

DXL Reference Manual

d

Related documentation

The following table describes where to find information in the Rational DOORS documentation set:

For information on

See

Rational DOORS

How to set up licenses to use Rational
DOORS

How to write requirements

How to integrate Rational DOORS with other
applications

The Rational DOORS Information Center

Rational Lifecycle Solutions Licensing Guide

Ger It Right the First Time

Rational DOORS API mannal

DXL Reference Manual

Chapter 1
Introduction

This chapter describes the DXL Interaction window, DXL library, and the basic features of DXL. It covers the following
topics:

* Developing DXL programs
* Browsing the DXL library
¢ Localizing DXL

* Language fundamentals

* Lexical conventions

* Constants

* Identifiers

* Types

* Declarations

* Expressions

* Statements

* Basic functions

Developing DXL programs

You can use the DXL Interaction window to develop small DXL programs.

For large-scale program development, you should use a third party editing tool when coding, and then load your code into
the DXL Interaction window to execute and debug it. You can set up a menu option in Rational DOORS to run your third
party editing tool.

DXL Reference Manual

To use the DXL Interaction window:

1. In either the Database Explorer or a module window, click Tools > Edit DXL.

@ DXL Interaction - DOORS FEX
=L input

DL output

I ewt eror Print...][Load...][Save Az][Broveze. .][Cloze][Help

2. Either type or load your program into the DXL input pane.

To load the contents of a file, click Load. To load a program from the DXL library, click Browse.
3. To run the program in the DXL input pane, click Run.

Any error messages that are generated are displayed in the DXL output pane.

To see the next error message, click Next error. The contents of the DXL input pane scroll to the line of source code
that caused the error displayed in the DXL output pane.

4. To print the contents of the DXL input pane with line numbers, click Print.

5. To save the contents of the DXL input pane to file, click Save As.

DXL Reference Manual

Right-click anywhere in the DXL input pane to display a pop-up menu with the sub-menus File, Edit, and Search. The
Edit sub-menu options have standard Windows functions. The File sub-menu options are described in the following

table:
File Description
Load Loads the contents of a text file into the DXL input pane. You can also use
drag-and-drop to load a file directly from Windows Explorer.
Save Saves changes you made to the text in the DXL input pane.
Save as Saves the contents of the DXL input pane to another file.
New Clears the DXL input pane. If you have made changes to the text that have not

yet been saved, you are asked if you want to save them.

The Search sub-menu options are described in the following table:

Search Description

Search Finds a string of text in the DXL input pane. The search is case-sensitive.

Again Repeats the search.

Replace Replaces one string of text with another. You can replace text strings one at a
time or all at once.

Goto line Moves the cursor to the start of a specified line. (This is useful when debugging

DXL programs because errors are indicated against line numbers.)

Browsing the DXL library

The DXL library is in the /1ib/dx1 folder in the Rational DOORS home ditrectory.

You can browse the DXL library when you are:

Using the DXL Interaction window, by clicking the Browse button to find a program to run.

Creating a DXL attribute, by clicking the Browse button to find a program to use for the attribute (see “DXL
attribute,” on page 467).

Creating a layout DXL column, by clicking the Browse button to find a program to use for the layout DXI. column
(see “Layout DXIL,” on page 700).

DXL Reference Manual

You see the DXL Library window. The DXL programs and the buttons you see depend on where you were when you
clicked the Browse button.

#] Browse Tools - DOORS E|E”z|
4 .

ormal m n HT kL Format
| Export comma or tab-separated spreadsheet and database data
| Export module ta Frametd aker
| Export module ta plain text
| Export RTF
OLE export to Microzoft Office Products

DOORS Outlook interface

Export module using automation to Excel 97

Export module using automation to Powerpoint family
[Warious utiliies for importing data into DOORS

[Seme example programs which illustrate various DXL features

| £

Degcription

HTML output az produced by this zcript

All data in the curment Wiew [whether default or athenwize] will
be exported inta HTML under the fallowing conditions.

o The "Object Text" attribute [or the 'main’ column) will be rendered az
NORMAL text.

o &l dizolaved attributes will be rendered in ITALIC in the form:

|

| £

| Pun || Edi. |[Pirt. |[Clese |[Heb

Button Action

Run Runs the selected program in your DXL Interaction window.
Edit Edits the selected program.

Print Prints the selected program.

Localizing DXL

Rational DOORS uses ICU resource bundles for accessing translated strings. DXL perms are available to access ICU
resource bundles containing translated strings for customized DXL. For information about creating ICU resource bundles,

see http://userguide.icu-project.org/locale/localizing.

Put the language resource files in a directory whose name is taken as the bundle name, under

$DOORSHOME/language, for example $DOORSHOME /language/myResource/de DE.res. There are two

bundles already shipped with Rational DOORS, core and DXL.)

DXL Reference Manual

LS_

Declaration
string LS (string key, string fallback, string bundle)

Operation

Returns the string from resource bundle that is identified by key. If the string identified by key is not found in the resource
bundle, the fallback string is returned.

Example

de.txt file contains;

de {
Keyl{"Ausgehend"}
Key2{"Ausgehende Links"}
Key3{"Normalansicht"}
Key4{"Klartext"}

}

From the command line, generate a resource bundle, for example genrb de.txt, and copy the resource bundle to
$DOORSHOME/language/myResource/, where myResource is the name of your resource bundle. The localized
strings can then be accessed using the LS perm, for example in the DXL editor, type:

print LS ("Keyl", "Ausgehend not found", "myResource") "\n"

print LS ("Key2", "Ausgehende Links not found", "myResource") "\n"
print LS ("Key3", "Normalansicht not found", "myResource") "\n"
print LS ("Key4", "Klartext not found", "myResource") "\n"

The output is:

Ausgehend

Ausgehende Links

Normalansicht

Klartext

Language fundamentals

DXL is layered on an undetlying programming language whose fundamental data types, functions and syntax are largely
based on C and C++. To support the needs of script writing, there are some differences. In particular, concepts like main
program are avoided, and mandatory semicolons and parentheses have been discarded.

DXL Reference Manual

Auto-declare

In DXL there is a mechanism called auto-declare, which means that a user need not specify a type for a variable. For
example, in the script:

i=5
print i

the interpreter declares a new variable and deduces from the assignment that its type is int.

Because DXL is case-sensitive, there is a potential hazard when relying on this mechanism to type variables. If you make a
mistake when typing a variable name, the interpreter assumes that a new variable is being used, which creates errors that are

hard to find.
This feature can be disabled by adding the line:
XFLAGS &=~AutoDeclare

to the bottom of the file $SDOORSHOME /1ib/dx1/startup.dxl.

Syntax

The syntactic style is more like natural language or standard mathematical notation. Consider the function:
string deleteUser (string name)

This can be called as follows:

deleteUser "Susan Brown"

The lack of semicolons is possible through DXI’s recognition of the end of a line as a statement terminator, except when it
follows a binary operator. This means you can break an expression like 243 over a line by making the break after the + sign.
A comment ending in a dash (/ /=) also enables line continuation.

As in C, == is used for equality, while = is used for assignment. Unlike C or Pascal, concatenation of symbols is a valid
operation.

Parsing

Statement or expression parsing is right associative and has a relatively high precedence. Parenthesis has the highest
precedence.

Because sqrt is defined as a function call that takes a single type real argument:
sgqrt 6.0

is recognized as a valid function call, whereas in C it is:

sqrt (6.0)

So, the C statement:

print (sqrt (6.0))

can be:

DXL Reference Manual

print sqgrt 6.0
in DXL
The following script declares a function max, which takes two type int arguments:

int max(int a, b) {
if a < b then return b else return a

}

print max (2, 3)

The call of max is parsed as print (max (2, 3)), which is valid. The statement:

print max 2,3

would generate errors. Because the comma has a lower precedence than concatenation, it is parsed as:
((print max(2)),3)

If in doubt, use the parentheses, and separate statements for concatenation operations.

Naming conventions

As a general rule, DXL reserves identifiers ending in one or more underscores (_,) for its own use. You should not use
functions, data types or variables with trailing underscores, with the exception of those documented in this manual.

Names introduced as data types in DXL, such as int, string, Module and Object, must not be used as
identifiers. The fundamental types such as int and string are in lower case. Rational DOORS specific types all start
with an upper case letter to distinguish them from these, and to enable their lower case versions to be used as identifiers.

Loops

In DXL, loops are treated just like any other operator, and are overloaded, that is, declared to take arguments and return
values of more than one type. The loop notation used is as follows:

for variable in something do {

}

The for loops all iterate through all values of an item, setting variable to each value in turn.

Note: When using for loops, care must be taken when deleting items within the loop and also opening and closing items
within a for loop. For example, if variableis of type Module and something is of type Project, and
within the for loop a condition is met that means one of the modules will be deleted, this should not be done
within the for loop as it can lead to unexpected results. A recommended method is to use a skip list to store the
modules and to do any manipulation required using the contents of the skip list.

DXL Reference Manual

10‘

Lexical conventions

Semicolon and end-of-line

DXL diverges from C in that semicolons can be omitted in some contexts, with end-of-line (newline) causing statement
termination. Conversely, newline does not cause statement termination in other contexts. This is a useful property;
programs look much better, and in practice the rules are intuitive. The rules are:

* Any newlines or spaces occurring immediately after the following tokens are ignored:

; ’ ? : = (+ * [
& - ! ~ / S << >> <>
< > <= >= == I= ” | &&
and || or AN += = *— /= o—
<<= >>= &= | = A= <- 1= => ..
. -> HR \

* Any newlines before an else ora) are ignored. All other newlines delimit a possibly empty statement.
* Multiple consecutive areas of white space containing newlines are treated as single newlines.

* The recognition of a newline can be avoided by prefixing it with an empty // comment or a comment ending in -.

Comments

The characters /* start a comment that terminates with the characters * /. This style of comment does nof nest.

The characters // start a comment that terminates at the end of the line on which it occuts. The end-of-line is not
considered part of the comment unless the comment is empty or the final character is —. This latter feature is useful for
adding comments to a multi-line expression, or for continuing a concatenation expression over two lines.

Notably, comments that immediately follow conditional statements can cause code to behave unexpectedly.
The following program demonstrates some comment forms:

/* Some comment examples (regular C comment) */

int a // a C++ style comment

int b = 1 + // We need a trailing - at the end -

2 // to prevent a syntax error between "+" and the newline
print //
"hello" // the // after print causes the following newline to be
// ignored

/*

DXL Reference Manual

int C // this whole block is commented out

Identifiers

An identifier is an arbitrarily long sequence of characters. The first character must be a letter; the rest of the identifier may
contain letters, numerals or either of the following two symbols:

DXL is case sensitive (upper- and lower-case letters are considered different).

The following words are reserved for use as keywords, and must not be used otherwise:

and bool break by case char
const continue default do else enum
for if in int module object
or pragma real return sizeof static
struct string switch then union void
while

The following keywords are not currently supported in user programs, but are reserved for future use:
case const default enum
struct switch union

A keyword is a sequence of letters with a fixed syntactic purpose within the language, and is not available for use as an
identifier.

File inclusion

To include files into DXL scripts, you can use either of the following:
#include "file"
#include <file>

Absolute or relative path names can be used. Relative paths must be based on one of the following forms depending on the

platform:
$DOORSHOME/1ib/dx1 (UNIX)
$DOORSHOME\\1ib\\dx1l (Windows)

DXL Reference Manual

where DOORSHOME is defined in a UNIX® environment variable, or on Windows platforms in the registry. The
Windows-style file separator (\) must be duplicated so that DXL does not interpret it as a meta-character in the string.

If the addins directory is defined in a UNIX environment variable or the Windows registry, this directory is also searched,
so relative path names can be with respect to the addins directory.

Note: The UNIX shell file name specification form ~user/ is not supported.

Pragmas

Pragmas modify the background behavior of the DXL interpreter, for example:
pragma runLim, int cyc

sets the timeout interval cyc as a number of DXL execution cycles. The timeout is suppressed if cyc is set to zero, as
shown in the following example:

pragma runLim, O // no limit

pragma runLim, 1000000 // explicit limit

There is also a pragma for setting the size of the DXL runtime stack, which is used as follows:

pragma stack, 10000

The default value is set to 1,000,000.

If running the DXL from the DXL editor, when the timeout limit is reached a message is displayed asking if you want to:
* Continue - script execution continues with the same timeout limit.

* Continue doubling the timeout - script execution continues with double the current timeout limit.

* Halt execution - DXL is halted with a run-time error.

If running in batch mode, it is good practise to execute scripts in the DXL editor initially to detect any errors or timeouts.
Pragma runlim,0 should be used in instances of timeouts.

Constants

Integer constants

An integer constant consisting of a sequence of digits is interpreted as octal if it begins with a 0 (digit zero); otherwise it is
interpreted as decimal.

A sequence of digits preceded by 0x or 0X is interpreted as a hexadecimal integer.

A sequence of Os or 1s preceded by Ob is interpreted as a binary number, and converted to an integer value.

DXL Reference Manual

Character constants

A character constant is a character enclosed in single quotes, as in ' x '. The value of a character constant is defined to be of

type char.
Certain non-graphic characters, the single quote and the backslash, can be represented according to the following escape
sequences:
Character Escape sequence
newline \n
hotizontal tab \t
backspace \b
carriage return \r
form-feed \f
backslash AR
single quote \!
bit pattern \ddd
any othet character \c

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits.

Any other character that is escaped is passed straight through.

Type real constants

A type real consists of an integer part, a decimal point, a fraction part, an e or E, and an integer exponent. The integer
and fraction part both consist of a sequence of digits.

You can omit either the integer part or the fraction part, but not both. You can omit either the decimal point or the
exponent with its e or E. You can add a sign to the exponent.

Example
1.0

0.1

lel0
1.2E30

DXL Reference Manual

The null constant

The constant null is used as a polymorphic value to indicate a null value. You can use it for any derived type (see
“Derived types,” on page 15). You can use it for both assignment to variables and conditional tests on variables.

Example
Object obj = null

if (null obj) {
ack "This object is empty"

Strings

A string literal, of type st ring and storage class static, is a sequence of characters surrounded by double quotes, as in
"apple".

Within a string the double quote () must be preceded by a backslash (\). For example “Pear\”” is the string Pear” in
quotes. In addition, you can use the same escape sequences as described in “Character constants,” on page 13, including the
newline character.

Identifiers

Identifiers denote variables, functions, types and values. You can introduce an identifier into a program by declaration or by
immediate declaration. Immediate declaration is when an undeclared identifier is used as the left hand side of an assignment
statement.

Variables

Variables represent regions of computer memory. The meaning of the value stored in a variable is determined by the type of
the identifier used to access the variable.

Unassigned variables contain the unassigned pattern, which is checked on all references. In this way, errors with unassigned
vatiables are avoided, and an accurate error message is reported.

Scope

Once declared, an identifier has a region of validity within the program known as its scope.

In general, identifiers are in scope following their declaration within the current block, and are available within nested
blocks. Identifiers can be hidden by re-declaration in nested blocks. For example, the following code prints a 4 and then a 3
in the output pane of the DXL Interaction window.

int i = 3

DXL Reference Manual

if (true) {
int i = 4
print 1 "\n"

}

print 1 "\n"

Types

Fundamental types

DXL has the following base types:
Base type Description

bool Denotes the domain of values true and false, which are provided as
predefined constants.

char Is similar to the C character type.
int Is the only integer type provided in DXL. On all platforms, integers are signed,

and have a precision of 32 bits.
real Is like the double type in C, with a precision of 64 bits.

void Is the type with no values; its main use is in declaring functions that do not
return a result.

string Is similar to the derived C type char*.

Derived types

DXL supports arrays, functions and references. An internal class facility provides new non-fundamental types, referred to as
built-in types, such as Object, Module and Template. DXL does not support class creation by user programs.

Declarations

Declarations are the mechanism used to associate identifiers with variables, functions or values.

Declarators

DXL follows C in its declarator syntax. However, only the simple forms should be necessary in DXL programs.

DXL Reference Manual

DXL extends C style arrays by enabling a variable to define the bounds of the array. The number of elements in an atray is
available by using the sizeof function.

Unlike C, DXL arrays can have only one dimension.
In addition to the normal C declarator forms, DXL provides the C++ reference declarator &.

DXL uses the ANSI C method of supplying a function’s formal parameters in the declarator itself with each argument given
as a fully specified type.

The following script gives some example declarations:

int i, j, k // declare 3 integers

int n = 4 // declare an integer and initialize it
bool al2] // declare an array of type bool of size 2
int b[n] // declare an integer array of size n

print sizeof a // prints "2"

Note: A declaration of the form ‘intn = {1,2,3}’ is not supported.

Immediate declaration

Immediate declaration is a DXL extension from C, which means that the first use of an undeclared variable is also a
declaration. It must be used in a context where an unambiguous value is given to it, for example the left hand side of an
assignment statement:

i=2

print i

Once declared, the identifier must be used consistently.

Function definitions

DXL functions are very close to the style of ANSI C functions. The following script gives some examples:
// define a function to find the maximum of two integers

int i

int max(int a, b) {

return a < b ? b : a

}// max

// This function applies f to every element in a,
// using an accumulation variable r that is initialized to base.

int apply accumulate(int base, int a[], int f(int, int)) {
int r = base
for (i = 0; i < sizeof a; i++) {
r = f(r, ali])

}

DXL Reference Manual

return r
} // apply accumulate
int a[5]

print "Filling an array:\n\n"

for (i = 0; i < sizeof a; i++) {
al[i] = random 1000
print a[i] "\n"

} // for

print "largest number was:

print apply accumulate (0, a, max)
// print largest element in a

Line 3 defines the function max, which has two parameters of type int and returns a type int. One difference from
ANSI C is that the parameter type specifier int need not be repeated before the b parameter.

Line 10 declares a function parameter £. Note that £’s parameters do not include redundant identifiers.

Operator functions

You can redefine DXL operators by prefixing the operator with : : to turn it into an identifier.

Example

This example defines a multiplication operator that applies to strings and integers.
string ::*(string s, int n) {
string x = ""
int 1
for 1 in 0 : n-1 do {
X =X s

return x
}
print ("apple " * 4)
This prints out:

apple apple apple apple

If you wish to overload the concatenation operator, which is normally represented by a space, use the symbol . . .
string ::..(real r, int n) {

string s = ""

int 1

// concatenate the string to a space n times

DXL Reference Manual

for i in 0:n-1 do {
s=s r " "

return s
}
print (2.45 3) "\n" // try it out
The program prints the string:
2.450000 2.450000 2.450000

Expressions

This section outlines the major differences between C and DXL expressions. The operations defined on DXL fundamental
types are explained in “Fundamental types and functions,” on page 115.

Reference operations

DXL supports C++ style reference operations. References are like var parameters in Pascal or Ada, which means they
provide an alias to a variable, not a copy. To declare a reference variable its name must be preceded by an ampersand (&).

Example

This example is a program to swap two integers. In C you have explicitly to pass the address of the variables to be swapped
and then de-reference them within the body of the function. This is not required in DXL.

// swap two integers
void swap (int &a, &b) {

int temp

temp = a; a = b; b = temp
}

int x = 2

int& z = x // z is now an alias for x
int y =3

print x " " y "\n"

swap (z, y) // equivalent to swap (x,Vy)
print x " " y "\n"

This program prints the string:

23
32

DXL Reference Manual

Overloaded functions and operators

Most functions and operators can be declared to take arguments and return values of more than one type.

Example
This example overloads a commonly used identifier print to provide an object printer.
// Overload print to define an Object printer
void print (Object o) {
string h = o0."Object Heading"
string t = o."Object Text"
print h ":\n\n" t "\n"
}

print current Object

Funct

ion calls

DXL enables calls of functions defined without parameters to omit the empty parenthesis, except where the call appears as
a function argument or any other context where a function name is valid. Function calls with single arguments can also omit
the parenthesis, but beware of concatenation’s high precedence when the argument passed is an expression.

Note: When overloading functions, ensure that the first declaration of the function does not have a void parameter, e.g
void print (void). This may lead to unexpected results. Furthermore, function calls of the form void
print (int i=0, int g=0) should also not be used.

Example

void motto () { // parameterless
print "A stitch in time saves nine.\n"

} // motto

int square(int x) {

return x*x

} // square

motto // call the function

print square 9 // two function calls
Casts

Because of DXL’s overloading facility, it is easy to write expressions that have more than one possible interpretation; that is,
they are ambiguous. Casts are used to pick which interpretation is required. Casts in DXI. come in two forms:

expression type

DXL Reference Manual

20

(type expression)
In the first form, the type name can appear after the expression, as in:
o = current Object

In the second form, the type may come first, but the whole expression must be within parenthesis:

o = (Object current)

Range

A range expression extracts a substring from a string, or substring from a buffer, and is used in regular expression matching.
It has two forms:

int from : int to
int from : int to by int by

Examples are given with the functions that use ranges.

Statements

This section describes how to construct statements in DXIL..

Compound statements

Compound statements are also referred to as blocks.

Several statements can be grouped into one using braces { . . . }.

Conditional statements

The if statement takes an expression of type bool, which must be in parenthesis. If the expression evaluates to true, it

executes the following statement, which can be a block. If the expression evaluates to false, an optional el se statement
is executed.

As an alternative form, the parenthesis around the condition can be dropped, and the keyword then used after the
condition.

Example
int i =2, § =2
if (1 < 3) {

i 4= 2
} else {
i += 3

DXL Reference Manual

if 1 == j then j = 22

The then form does not work with a condition that starts with a component in parenthesis, for example:
if (2 + 3) == 4 then print "no"

generates a syntax errof.

DXL also supports the C expression form:

2 + 3 ==5 72 print "yes" : print "no"

The if statement also supports multiple else 1if statements, which can be written as elseif.

Example

int i =1, § =2

if (1< 9) {

i+= 3
} else if (1 == 3j) {
i+=2

{ else if (1 > j) |

i+=1

Do not add a comment in the middle of the else 1if statement.

Example

int i =1, § =2

if (1 < 3J) |

i+= 3
} else

// Do not add comment here
if (1 == 3J) {

i+=2

DXL Reference Manual

21

{ else if (1 > j) |
i+=1
}

DXL considers the else 1if to be one statement and can give incorrect results if a comment line with a preceding space
of tab is in-between the el se and i f.

Loop statements

DXL has three main loop (iteration) statements. It supports the C forms:

for (init; cond; increment) statement

while (cond) statement

and a new form:

for typel vl in type2 v2 do

where typel and type?2 are two types, possibly the same; v1 is a reference variable and v2 is a variable, which can be a
range expression (see “Range,” on page 20). This form is heavily used in DXL for defining type-specific loops.
Example

int x
int a=2
int b=3
for (x=1; x <= 11; x+=2) {

print x

}

while (a==2 and b==3) {
print "hello\n";
a =3

}

for x in 1 : 11 by 2 do {
print x

}

In this example, the first loop is a normal C for loop; the second is a normal C while loop. Note that DXL offers the
keyword and as an alternative to &&.

The last form in the example uses a range statement, which has the same semantics as the first C-like loop.

Break statement

The break statement causes an immediate exit from a loop. Control passes to the statement following the loop.

Example

int 1 =1

DXL Reference Manual

while (true) {
print i++
if (i==10){
break
}// if (i==10)

}// while (true)

Continue statement

The continue statement effects an immediate jump to the loop’s next test or increment statement.
Example
int 1 =1

while (true) {

if (i==4) { // don't show 4
i++
continue

y// 1f (i==4)

print i++

if (1==10) {
break

}// if (i==10)
}// while (true)

Return statement

The return statement either exits a void function, or returns the given value in any other function.

Note: Care should be taken when using the return statement. For example, assigning a value to a variable where the

assignment is a function, and that function returns no value, can lead to unexpected values being assigned to the

variable.

Example
// exit void function
void print (Object o) {

if (null o)
return string h = o."Object Heading"

print h "\n"
} // print

// return given value

DXL Reference Manual

23

24

int double (int x) {
return x + x // return an integer
} // double

print double 111

Null statement

The null (empty) statement has no effect. You can create a null statement by using a semicolon on its own.
Example
int a = 3

if (a < 2) ; else print a

Basic functions

This section defines some basic functions, which can be used throughout DXI.

of
This function is used as shown in the following syntax:
of (argument)
Returns the passed argument, which can be of any type. It has no other effect. It is used to clarify code.
Example
if end of cin then break
sizeof

This function is used as shown in the following syntax:
sizeof (array(])

Returns the number of elements in the array, which can be of any type.

Example

string strs[] = {"one", "two", "three"}
int ints[] = {1, 2, 3, 4}

print sizeof strs // prints 3
print sizeof ints // prints 4

DXL Reference Manual

halt

Declaration
void halt ()

Operation

Causes the current DXL program to terminate immediately. This is very useful if an error condition is detected in a
program.

Example

if (null current Module) {
ack "program requires a current module"
halt

checkDXL

Declaration

string checkDXL[File] (string code)

Operation
Provides a DXL mechanism for checking DXL code.

The checkDXL function analyzes a DXL program and returns the string that would have been produced in the DXL
Interaction window had it been run on its own.

The checkDXLF1ile function analyzes a file and returns the error message that would have been produced in the DXL
Interaction window had the file been run.

Example

string errors =
checkDXL ("int j = 3 \n print k + j")

if (!null errors)
print "Errors found in dxl string:\n" errors
"\n"

would produce the following in the DXL Interaction window’s output pane.

Errors found in dxl string:

-E- DXL: <Line:2> incorrect arguments for (+)

-E- DXL: <Line:2> incorrect arguments for function (print)

-E- DXL: <Line:2> undeclared variable (k)

DXL Reference Manual

25

26

sort

Declaration

void sort(string stringArrayl])

Operation

Sorts the string array st ringArray. The sort function handles string arrays containing non-ASCII characters, as do the

string and Buffer compatison operators.

Example

int noOfHeadings = 0

Object o

for o in current Module do {
string oh = o0."Object Heading"
if (!'null oh) noOfHeadings++

}

string headings[noOfHeadings]

int 1 = 0

for o in current Module do {
string oh = o0."Object Heading"
if (!null oh) headings[i++] = oh

}

sort headings

for (i = 0; i < noOfHeadings; i++) print headings[i] "\n"

activateURL

Declaration

void activateURL (string url)

Operation

This is equivalent to clicking on a URL in a formal module.

batchMode, isBatch

Declaration
bool batchMode ()

bool isBatch ()

DXL Reference Manual

Operation

Both functions return true if Rational DOORS is running in batch mode, and false if Rational DOORS is running in
interactive mode.

DXL Reference Manual

27

28

DXL Reference Manual

‘29
Chapter 2

New in DXL for Rational DOORS 9.7.0

This chapter describes changes to the DXL Reference Manual in Rational DOORS 9.7.0:
* Symbol character mapping

* getFontList

¢ getMappedCode

* getMappedCodes

* updateMappedCodes

Symbol character mapping

getFontList

The perm getFontList fills a skip list with the name of fonts that have a mapped character. See “getFontList” on page 958.

getMappedCode

The perm getMappedCode returns the unicode value of a character in the specified font.

If no character mapping is defined (either the font is not known or the actual character provided is not mapped), a value of
0 is returned. See “getMappedCode” on page 958.

getMappedCodes

The perm gezMappedCodes fills the provided skip list with any existing mappings for the supplied font. You can then update
this skip list with additional mappings. You must create the skip list before being passed to the function.

See “getMappedCodes” on page 959.

updateMappedCodes

The perm updateMappedCodes updates or adds mappings for the supplied font. If the font has previously been mapped, the
contents of skip list replace the mappings. See “updateMappedCodes” on page 959.

DXL Reference Manual

30

DXL Reference Manual

Chapter 3

New in DXL for Rational DOORS 9.6.1

This chapter describes changes to the DXL Reference Manual in Rational DOORS 9.6.1:

Object Management functions:

* purgeObject_

Dialog box functions:

* helpOn

* minimumSize

o listView

Display control functions:

* Compound filters

¢ Columns: backgroundColor(get)
* Columns: backgroundColor(set)
* Layout DXL: setRefreshDelta
OLE objects

* olelnsert (insert to buffer)
General functions:

* Checksum validation

* HTML help

* Asynchronous HTTP requests
* OSLC DXL Services

* Timer

Triggers

‘31

Object Management functions

purgeObject

The function “purgeObject_

>

> on page 386 removes the specified soft-deleted object. Once executed, this object cannot be

recovered. The name ends in '_' to discourage casual use. The documentation for this function is added in version 9.6.1.3 of

this manual.

DXL Reference Manual

32‘

Module Properties

delete(ModuleProperties)

The function “delete(ModuleProperties)” on page 349 deletes the supplied moduleProperties structure. If not called after a
call to getProperties, the memory will only be released after the context is released. This function is new in Rational
DOORS version 9.6.1.4.

Dialog box functions

helpOn

The documentation for the helpOn function has been removed from this manual because the help is no longer delivered in
the HTML Help (chm) format.

minimumSize

The new function “minimumSize” on page 502 sets the minimum size of the dialog box to a specified width and height.

listView

Beginning in Rational DOORS version 9.6.1.7, you can use Cttl+A keys to select all items in a multiselect listView. See
“listView” on page 549.

Display control functions

Compound filters

The documentation for “Compound filters” on page 658 includes new example code in version 9.6.1.3 of this manual.

DXL Reference Manual

33

Columns: backgroundColor(get)

The function “backgroundColor(get)” on page 691 returns the name of the attribute that is used to color the background of
a specific column. The function was first included in version 9.4.0. The documentation is added in version 9.6.1.3 of this
manual.

Columns: backgroundColor(set)

The function “backgroundColor(set)” on page 692 sets the background color of a specific column. The function was first
included in version 9.4.0. The documentation is added in version 9.6.1.3 of this manual.

Layout DXL: setRefreshDelta

The function “setRefreshDelta” on page 704 was a new function in Rational DOORS 9.6.0. The documentation is added in
version 9.6.1 of this manual.

OLE objects

olelnsert (insert to buffer)

The function “olelnsert (insert to buffer)” on page 744 inserts OLE into the given buffer at a given character offset. The
documentation for this function is added in version 9.6.1.4 of this manual.

General functions

Checksum validation

The checksum validation functions enable you to create a validation record for a module before you export or archive the
module. When the module is later imported or restored to the project, you can compare the checksum validation record
with the module to identify changes to the text or other attribute values in the selected views.

createChecksumFile

The function “createChecksumFile” on page 929 creates a compressed file with a .zip extension that contains XML files
that describe a module, selected views within the module, and object attributes that are associated with objects in those
views.

DXL Reference Manual

34

loadChecksumFile

The function “loadChecksumFile” on page 930 loads a checksum package for a specific module and loads the list of views
that are available for checksum comparison.

compareChecksumFile

The function “compareChecksumFile” on page 931 enables the user to compare the checksum validation record with the
related module to identify changes to the text or other attribute values in the selected views.

HTML help: helpOnEx

The documentation for the helpOnEx function has been removed from this manual because the help is no longer delivered
in the HTML Help (chm) format.

Asynchronous HTTP requests

The “Asynchronous HTTP requests” on page 947 ate used to make HTTP requests asynchronously so that the main
Rational DOORS process is not blocked. With these functions, the DXL user interface is still be responsive while an HTTP
request is in progress.

Future HttpRequest

The Future HttpRequest function starts an HTTP request but instead of waiting for a response, it immediately returns a
Future object. The Future object contains a value that will be delivered in future. The Future object can be checked for
readiness later. The HTTP response can be fetched from the Future object when it is ready.

The documentation for this function is added in version 9.6.1.6 of this manual.

DXL Reference Manual

35

OSLC DXL Services

OSLC DXL Setvices ate DXL scripts that can be run by making an Open Setvices for Lifecycle Collaboration (OSLC)
request to an instance of Rational DOORS Web Access. A service must be added to the DOORS database before it can be
run. DXL functions are available to add, remove, and return information about DXL services. For mote information and
examples, see the help topic: OSLC DXL services for Rational DOORS.

Support for OSLC DXL Services was added to Rational DOORS in a previous release. This documentation is added in
version 9.6.1.4.

OSLCDXLService properties

“OSLCDXILService properties” on page 951 are defined for use with the . (dot) operator and a OSLCDXLService handle.

setDxIServiceResult

The function “setDxlIServiceResult” on page 952 sets the result string that is returned as a result of the service that is being
run.

addOrUpdateOSLCDXLService

The function “addOrUpdateOSLCDXIService” on page 952 adds a new service to the list of configured DXL services or
updates an existing one.

removeOSLCDXLService(string key)

The function “removeOSLCDXILService(string key)”” on page 953 removes a service from the configuration. Finds the
service by its key (that is, name).

removeOSLCDXLService(OSLCDXLService service)

The function “removeOSLCDXTService(OSLCDXI.Service setvice)” on page 953 removes a service object from the
configuration.

DXL Reference Manual

https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.6.1/com.ibm.doors.install.doc/topics/r_dxl_services.html

36‘

Timer

Documentation for the timer functions is added in version 9.6.1.4. The functions are available in eatlier versions.

timer

“Timer” on page 955 creates a timer element that executes the callback function every 'n' seconds.

stopTimer

The function “stopTimer” on page 955 stops the execution of a specific timer. Returns true if the timer was running and is
now stopped.

startTimer

The function “startTimer” on page 955 restarts the execution of a specific timer. Returns true if the timer was stopped and
is now restarted.

isTimer

The function “isTimer” on page 956returns TRUE if 1d is a valid action index and it is a timer.

getTimerName

The function “getTimerName” on page 956 returns a string containing the name of the timer (or NULL if not a timer).

getTimerinterval

The function “getTimerInterval” on page 956 returns the number of seconds between each execution of the timer.

getTimerlD

The function “getTimerID” on page 956 returns the timer id as an integer.

getTimerRunning

The function “getTimerRunning” on page 957 returns TRUE if 1d is a timer and it is running,.

DXL Reference Manual

Triggers

The documentation for triggers is updated in version 9.6.1.6 to include this statement: Rational DOORS Web Access does
not support triggers. This condition applies to all previous versions also.

DXL Reference Manual

37

38

DXL Reference Manual

Chapter 4

New in DXL for Rational DOORS 9.6

This chapter describes features and documentation that are new in Rational DOORS 9.6:

Operating system interface: getMemoryUsage

Mini database explorer

Modules: downgrade, downgradeShare

History constants

Dialog box functions: common element operations
Display control

¢ Columns

* Layout DXL setRefreshDelta

HTTP Server

Operating system interface

getMemoryUsage

This perm “getMemoryUsage” on page 180 returns the Rational DOORS client memory usage in MB.

The perm was added in Rational DOORS 9.3.0.7, but the documentation is new in 9.6.0.1.

Mini database explorer

This perm “fnMiniExplorer” on page 200 creates a miniature database explorer window that shows a tree view in which you
can navigate through the hierarchy of the Rational DOORS database and select an item.

This information is added to the documentation in Rational DOORS 9.6.0.1. The function is available in previous releases.

DXL Reference Manual

39

40‘

Modules

downgrade

This information is added to the documentation for the existing perm “downgrade” on page 301 in Rational DOORS
9.6.0.1:

If there are unsaved changes to the module, then the user is prompted to save the changes. Alternatively, the save perm can
be used prior to downgrade, so that any changes to the module are preserved.

downgradeShare

This information is added to the documentation for the existing perm “downgradeShare” on page 301 in Rational DOORS
9.6.0.1:

If there are unsaved changes to the module, then the user is prompted to save the changes. Alternatively, the save perm can
be used prior to downgrade, so that any changes to the module are preserved.

History

Constants (history type)

The following constants are added to the list of “Constants (history type)” on page 333:
* const HistoryType moveObject

* const HistoryType synchronizeModule

* const HistoryType commentModule

* const HistoryType commentObject

This information is added to the documentation in Rational DOORS 9.6.0.1. The functions are available in previous
releases.

DXL Reference Manual

41

Dialog box functions: common element operations

setTextChangeCB

This perm “setTextChangeCB” on page 512 sets the text change callback for field, richField, text, richText DBEs where the
callback is of the form void callbackFn (DBE). When the callback function is invoked on a text change, DBE will be
the handle of the edit control DBE, which can be field, richField, text or richText.

This is a new function in Rational DOORS 9.6.

toolBarEditGetString

This perm “toolBarEditGetString” on page 513 gets the contents of the edit control hosted on the toolbar with DBE
handle tb, where 1ndex identifies the edit control on this toolbar by the index of the edit control.

This is 2 new function in Rational DOORS 9.6.

Display control: columns

link(get)

This perm “link(get)” on page 696 returns true if column c is a link indicator column.

'This is a new function in Rational DOORS 9.6.

link(set)

This perm “link(set)” on page 696 makes column c a link indicator column.

'This is a new function in Rational DOORS 9.6.

changebar(get)

This perm “changebar(get)” on page 696 returns true if column c is a change bar column.

'This is a new function in Rational DOORS 9.6.

changebar(set)

This perm “changebar(set)” on page 696 makes column ¢ a change bar column.

DXL Reference Manual

42

'This is a new function in Rational DOORS 9.6.

currentColumn(get)

This perm “currentColumn(get)” on page 698 gets the current column for this DXL context. If the DXL is not layout DXL
then this will return NULL.

This information is added to the documentation in Rational DOORS 9.6. The function is available in previous releases.

Display control: Layout DXL

setRefreshDelta

The function “setRefreshDelta” on page 704 is a new Layout DXL function in Rational DOORS 9.6. The documentation
for this function is added in 9.6.1.

HTTP Server

The new section “HTTP Server” on page 942 defines functions for making HTTP requests to a URL.

This information is added to the documentation in Rational DOORS 9.6. The functions atre available in the most recent
previous releases.

DXL Reference Manual

Chapter 5

New in DXL for Rational DOORS 9.5

This chapter describes features and documentation that are new in Rational DOORS 9.5:
* Embedded OLE objects and the OLE clipboard

* OSLC Link Discovery

e Database properties

* Rational Directory Server

Embedded OLE objects and the OLE clipboard

olelnsert

Declaration
bool oleInsert (Object o, [attrRef],string fileName, [bool insertAsIcon])

where the optional parameter at t rRef is in the following format: (Object o) . (string attrName)

Operation

Embeds the file £iIeName as an OLE object in the Rational DOORS formal object o in a text attribute. If the optional
parameter attrRef is specified, then the OLE object is embedded in the user-defined text attribute. If no parameter is
specified, then the OLE object is embedded in the system Object Text attribute.

If the optional parameter insertAsIcon is specified, then if true, the OLE object is displayed as an icon, else it is
displayed as content. If no patameter is specified, then the default is to display the OLE object as content.

The function returns true on successful insertion of the OLE object. Otherwise, it returns false.

An OLE package is created if a file has no associated applications that support OLE. OLE packages even allow executable
files to be embedded into documents. It is then possible to execute such a file from within the document.

Example
/*

this code segment embeds an existing word document into the current formal
object
*/

string docName = "c:\\docs\\details.doc"

Object obj = current

DXL Reference Manual

43

44

if (olelInsert(obj, obj."my text", docName)) {
print "Successfully embedded document\n"

} else {
print "Problem trying to embed document\n"

OSLC Link Discovery

When OSLC (external) links are discovered the results are stored in DOORS in a database-wide cache so that future
sessions that open modules with those links open faster. When a user opens a module, the cache is checked first for any
external links. If the data in the cache has not yet expired then the cached external links are shown; else, a new query is
executed to discover any OSLC (external) links and the cache is then updated with the results. The cache has a default
expiry time of 5 minutes after which the external links are considered to be out of date. This expiry time can be modified.

getCachedExternalLinkLifeTime

Declaration
int getCachedExternallinkLifeTime ()

Operation

Returns the life time (expity time) of the cached external links in seconds.

setCachedExternalLinkLifeTime

Declaration

string setCachedExternallinkLifeTime (int lifetime)

Operation
Sets the life time (expiry time) of the cached external links to lifetime seconds.
If the value lifetime is zero then this will disable link discovery.

Returns an error if the user does not have the manage database privilege; otherwise, returns null.

DXL Reference Manual

45

Database properties

getReconfirmPasswordRequired

Declaration

bool getReconfirmPasswordRequired /()

Operation

Returns true if a reconfirmation password is required after a specified timeout period; otherwise, returns false.

setReconfirmPasswordRequired

Declaration

void setReconfirmPasswordRequired (bool required)
Operation
Sets whether a reconfirmation password is required after a specified timeout period, depending on the value of required.

This perm only operates if the cutrent user has the Manage Database privilege.

getReconfirmPasswordTimeout

Declaration

int getReconfirmPasswordTimeout ()

Operation

Returns the timeout period (in minutes) before the reconfirmation password dialog appears.

setReconfirmPasswordTimeout

Declaration

void setReconfirmPasswordTimeout (int timeout)

Operation
Sets the timeout period to timeout minutes before the reconfirmation password dialog appears.

This perm only operates if the cutrent user has the Manage Database privilege.

DXL Reference Manual

getRequireLettersinPassword

Declaration

bool getRequirelettersInPassword ()

Operation

Returns true if a password is required to contain at least one alphabetic character; otherwise, returns false.

setRequireLettersinPassword

Declaration

string setRequirelettersInPassword (bool required)

Operation
If requiredis true, then a password is required to contain at least one alphabetic character.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getRequireNumberlinPassword

Declaration

bool getRequireNumberInPassword ()

Operation

Returns true if a password is required to contain at least one number; otherwise, returns false.

setRequireNumberlnPassword

Declaration

string setRequireNumberInPassword (bool required)

Operation
If required is true, a password is required to contain at least one number.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getRequireSymbollnPassword

Declaration

bool getRequireSymbolInPassword ()

DXL Reference Manual

47

Operation

Returns true if a password is required to contain at least one non-alphanumeric character; otherwise, returns false.

setRequireSymbollnPassword

Declaration

string setRequireSymbolInPassword(bool required)

Operation
If required is true, a password is required to contain at least one non-alphanumeric character.

This perm only opetates if the cutrent user has the Manage Database privilege, otherwise an error message is returned.

getMinPasswordGeneration

Declaration

int getMinPasswordGeneration ()

Operation

Returns the minimum number of password generations before a password can be reused.

setMinPasswordGeneration

Declaration

string setMinPasswordGeneration (int num)

Operation

Sets the minimum number of password generations before a password can be reused to num. The minimum number
cannot exceed the in-built maximum limit of 12 generations before a password can be reused.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getMaxPasswordGenerationLimit

Declaration

int getMaxPasswordGenerationLimit ()

Operation

Returns the in-built maximum limit of password generations before a password can be reused. This maximum limit is set to
12.

DXL Reference Manual

48

getMinPasswordAgelnDays

Declaration

int getMinPasswordAgeInDays ()

Operation

Returns the minimum number of days before a password can be reused.

setMinPasswordAgelnDays

Declaration

string setMinPasswordAgelInDays (int days)

Operation

Sets the minimum number of days before a password can be reused to days. The minimum number cannot exceed the
in-built maximum limit of 180 days before a password can be reused.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getMaxPasswordAgeLimit

Declaration

int getMaxPasswordAgeLimit ()

Operation

Returns the in-built maximum limit of days before a password can be reused. This maximum limit is set to 180 days.

Rational Directory Server

getTDPortNo

Declaration
int getTDPortNo ()

Operation

Returns the Rational Directory Server port number.

DXL Reference Manual

setTDPortNo

Declaration

string setTDPortNo (int 1)

Operation

Sets the Rational Directory Server port number.

Returns an error string if the current user is not the administrator.

DXL Reference Manual

49

50

DXL Reference Manual

Chapter 6

New in DXL for Rational DOORS 9.4

This chapter describes features that are new in Rational DOORS 9.4:
¢ Attribute definitions
* Attribute types

e Rich text strings

Attribute definitions

Attribute definition properties

Properties are defined for use with the . (dot) operator and an attribute definition handle to extract information from an
attribute definition, as shown in the following syntax:

(AttrDef ad) .property

The following property is now supported:

String property Extracts

uri The URI of an attribute definition.

create(attribute definition)

Syntax

AttrDef create ([module|object]
[property value]...
[(default defval)]
attribute (string attrName))

Operation

Creates a new attribute definition called attrName from the call to attribute, which is the only argument that must
be passed to create. The optional arguments modify create, by specifying the value of attribute properties. The
arguments can be concatenated together to form valid attribute creation statements.

The keywords module and object specify that the attribute definition that is being created applies to modules or
objects, respectively.

DXL Reference Manual

51

The default property specifies the default value for the attribute definition that is being created as defVal. This property
should always be specified within parenthesis to avoid parsing problems. The value must be given as a string, even if the
undetlying type is different. Rational DOORS converts the value automatically.

As required, you can specify other properties. The defaults are the same as the Rational DOORS user interface. The
following property is now supported:

String property Specifies

uri The URI of an attribute definition.

modify(attribute definition)

Declaration

AttrDef modify (AttrDef old,
[setproperty value,]
AttrDef new)

Operation

Modifies an existing attribute definition by passing it a new attribute definition. The optional second argument enables you
to set a single property. The following property is now supported:

String property Sets
uri The URI of an attribute definition.
Example

AttrDef ad = create object type "Integer" attribute "cost"
ad = modify(ad, object type "Integer" attribute "Costing")
ad = modify(ad, setHistory, true)
ad = modify(ad, setDefault, "123")

ad = modify(ad, setURI, "http://www.webaddress.com")

Attribute types

setURI

Declaration

AttrType setURI (AttrType at, string URI, string &errMess)

DXL Reference Manual

53

AttrType setURI (AttrType at, string name, string URI, string &errMess)

AttrType setURI (AttrType at, int index, string URI, string &errMess)

Operation

Sets the URI for the specified attribute type. Returns a modified attribute type. If there is an error, the message is returned
in the final string parameter. The URI can be set for a specified enumeration value or enumeration index.

Example

AttrType at

string errorMsg

string index[] = { "first", "second", "third" }

at = setURI(at, "http://www.webaddress.com", errorMsg)

at = setURI (at, index[0], "http://www.webaddress.com", errorMsg)
getURI
Declaration

string uri (AttrType at)
string uri (AttrType at, string name)

string uri (AttrType at, int index)

Operation

Gets the URI for the specified attribute type or for a named enumeration value or for a enumeration index.

Rich text strings

applyTextFormattingToParagraph

Declaration

string applyTextFormattingToParagraph(string s, bool addBullets,
int indentLevel, int paraNumber, [int firstIndent])

Operation
Applies bullet and/or indent style to the given text, overwriting any existing bullets/indents.
* If addBulletsis true, adds bullet style.

e If indentLevel is nonzero, adds indenting to the value of indentLevel. The units for indentLevel are twips =
twentieths of a point.

DXL Reference Manual

54

* If paraNumber is zero, the formatting is applied to all the text. Otherwise it is only applied to the specified paragraph
number.

* If the optional parameter £irstIndent is specified, then this sets the first line indent. If the value is negative then
this sets a hanging indent. The units are in points.

The input string s must be rich text. For example, from string s = richText o."Object Text".
Returns a rich text string which describes the text with the formatting applied.

Example

Object o = current

string s = o."Object text"

0."Object text" = richText (applyTextFormattingToParagraph (richText
s, true, 0,0))

Adds bullet style to all of the current object’s text.

DXL Reference Manual

Chapter 7

New in DXL for Rational DOORS 9.3

This chapter describes features that are new in Rational DOORS 9.3:
* Converting a symbol character to Unicode

* Dialog box functions

* Operations on type string

* Embedded OLE objects and the OLE clipboard
* OLE information functions

e Discussions

* RIFID

* Rational DOORS URLs

e Filters

* Compound Filters

* Localizing DXL

* Finding links

* Links

Converting a symbol character to Unicode

symbolToUnicode

Declaration

char symbolToUnicode (char symbolChar, bool convertAllSymbols)

Operation

Converts a symbol character to its Unicode equivalent. If convertAllSymbols is false, only symbols with the Times
New Roman font equivalents are converted.

DXL Reference Manual

55

56‘

Dialog box functions

addAcceleratorKey

Declaration

void addAcceleratorKey (DB db, void dxlCallback(), char accelerator, int
modifierKeyFlags)

Operation

Adds an accelerator key accelerator to the dialog db with the callback function dx1Callback () and the passed-in
modifierKeyFlags. modifierKeyFlags is used in conjunction with the accelerator parameter to change
which key should be pressed with the accelerator key. Possible values for it are modKeyNone, modKeyCtrl,
modKeyShift and null.

The specified DXL callback fn dx1Callback () executes for the specified keystroke combination being pressed when
the DXL dialog box db is active.

Only call this perm after the dialog box db has been realized, otherwise a DXL run-time error will occur.

Example
void fn ()
{
print "callback fires\n"
}
DB db = create("testDialog", styleStandard)

realize db

// The callback fn() will be executed on pressing Shift+F7 when the dialog db is
active.

addAcceleratorKey (db, fn, keyF7, modKeyShift)

Operations on type string

unicodeString

Declaration

string unicodeString (RTF string str, bool convertAllSymbols, bool
returnAsPlainText)

DXL Reference Manual

57

Operation

Returns the value of the specified rich text string as RTF or plain text. If the attribute contains characters in Symbol font,
these characters are converted to the Unicode equivalents.

If convertAllSymbols is true, all symbol character are converted. If false, only Unicode characters that have a good
chance of being displayed are used. See the symbolToUnicode perm for a description of which characters are
converted.

The value is returned as plain text if returnAsPlainText is true. Otherwise the value is returned as RTF.

escape

Declaration
string escape(string str, char escapeChar, string escapeChars)

Operation

Escapes all the characters in str which are in escapeChars, with the escapeChar character. This also escapes
escapeChar itself.

Example
escape ("hello world", '/', "1") returns "he/l1/lo wor/1d"

escape ("hello world #1", '#', "1h") returns "#he#l#lo wor#ld ##1"

stripPath

Declaration
string stripPath(string path, bool isEscaped)

Operation
Removes the path part from path, using forward slash as the path separator.

If isEscaped s true, the slash character can be used as a literal character rather than a path separator by preceding the
character with a backslash.

Example
stripPath ("abc/def/ghi", b) returns "ghi", where b is true or false.
stripPath ("abc/def\\/ghi", true) returns "def/ghi"

DXL Reference Manual

58‘

Embedded OLE objects and the OLE clipboard

olePasteSpecial

Declaration

string olePasteSpecial (string attrRef, bool displayAsIcon)

Operation

Copies an OLE object from the clipboard and appends it to at tRef. The boolean displayAslcon, when set to t rue will
display the OLE object as an icon in the object. Returns null on success and displays an error message on failure.

Example
Object o = current

olePasteSpecial (o."object text", false)

OLE information functions

oleSetHeightandWidth

Declaration
oleSetHeightandWidth (string attrRef, int height, int width, int index)

Operation
Sets the height and width of the OLE object within attrRef at the specified index.

Example
Object o = current Object
oleSetHeightandWidth (o."Object Text"™, 150, 150, 1)

DXL Reference Manual

Discussions

isDiscussionColumn

Declaration

bool isDiscussionColumn (Column c)

Operation

Returns true if the column is a discussion column, otherwise false.

setDiscussionColumn

Declaration

void setDiscussionColumn (Column ¢, string s)

Operation

Sets the filter on the discussion column based on the supplied discussion DXL filename.

Example
Column c
for ¢ in current Module do
{
if (isDiscussionColumn (c))
{
string s = dxlFilename (c)
if (s != null)
{
Module m = edit ("/TestDiscussions ", true)
//Open a module, with some discussions in it.
if (m !'= null)
{
Column cNew = insert (column 3)
title(cNew, "My copy Discussion™)

string home = getenv ("HOME")

string fullPath = home "\\" s ""

string contents = readFile (fullPath)

DXL Reference Manual

//Call dx1 PERM on that column before setting the discussion column. The
//discussion column is also a modified version of LAYOUT dxl.

dx1 (cNew, contents)
setDiscussionColumn (cNew, s)
width (cNew, 100)

refresh (m, false)

canModifyDiscussions

Declaration

bool canModifyDiscussions ({Module m| Item i| string s} [, {User |string}l])

Operation

Returns true if a given user or named user (current user if the parameter is not supplied) is allowed to create a discussion or
a comment on a discussion for the given module, item or named module. The use of item is intended for use when the

Item represents a module.

canEveryoneModifyDiscussions

Declaration

bool canEveryoneModifyDiscussions ({Module m| Item 1i})

Operation

Returns true if the discussions access list for the given module or item contains the special "Everyone" group.

addUser

Declaration

void addUser (Item i, {User ul| string s})

Operation
Adds the user or named user to the Discussion Access List for an Ttem. The updated list is not saved in the database until

saveDiscussionAccessList is called.

DXL Reference Manual

61

addGroup

Declaration
void addGroup (Item i, {Group g| string s})

Operation

Adds the group or named group to the Discussion Access List for an Item. The updated list is not saved in the database
until saveDiscussionAccessList is called.

removeUser

Declaration
void RemoveUser (Item i, {User ul| string s})

Operation

Remove the user or named user from the Discussion Access List for an ITtem. The updated list is not saved in the database
until saveDiscussionAccessList is called.

removeGroup

Declaration
void removeGroup (Item i, {Group g| string s})

Operation

Remove the group or named group from the Discussion Access List for an ITtem. The updated list is not saved in the
database until saveDiscussionAccessList is called.

saveDiscussionAccessList

Declaration

string saveDiscussionAccessList (Item 1)

Operation

This perm saves the discussion access list for the given item to the database. This perm is only successful for an
administrator or a user with manage database privileges. If the call is successful, a null value will be returned, otherwise a

string with an error message will be returned.

DXL Reference Manual

62‘

RIF ID

getRifID

Declaration
string getRifID(Object o)

Operation

Returns a string with the RIF ID for object o. If the object does not have a RIF ID, an empty string is returned.

getObjectByRiflD

Declaration
Object getObjectByRifID (Module m, string s)

Operation

Returns the object within module m with a RIF ID of s. If the module does not contain an object with the input RIF ID,
null is returned.

Rational DOORS URLs

getResourceURL

Declaration

string getResourceURL(Module | Object| Database__ | ModuleVersion| ModName___| Folder | Project | Item)

Operation

Returns the resource URL of the passed in item.

getResourceURLConfigOptions

Declaration

void getResourceURLConfigOptions(string &dwaProtocol, string &dwaHost, int &dwaPort)

DXL Reference Manual

63

Operation

Gets the dwaProtocol, dwaHost, and dwaPort DBAdmin options configured for this database. The
dwaProtocol, dwaHost, and dwaPort parameters contain the values upon return.

decodeResourceURL

Declaration

string decodeResourceURL(string resourceURL, string &protocol, string& dbHost, int& dbPort, string& repositoryld,
string& dbName, string& dbld, Item&, ModuleVersion&, string& viewName, int& objectAbsno)

Operation

Breaks down a passed-in resource URL into its constituent parts and passes back the information as may be applicable into

the reference parameters.

Returns null on success, error message on failure.

Filters

getSimpleFilterType _

Declaration
int getSimpleFilterType (Filter)

Operation

Returns the type of the simple filtet; attribute, link, object, or column. Please note that the returned value corresponds to the
index of the appropriate tab page on the filter dialog. If the specified filter is not a simple filter, -1 is returned.

getAttributeFilterSettings_

Declaration

bool getAttributeFilterSettings (Module,
Filter,
string& attributeName,
int& comparisonType,
string& comparisonValue,
bool& matchCase,

bool& useRegexp)

DXL Reference Manual

64

Operation

Gets details of the specified attribute filter in the return parameters. The function returns false if the filter is not a valid
attribute filter.

The comparisonType paramenter returns the internal index of the comparison. This is different to the index that is
used in the associated combo box on the filter dialog. The translation is performed by the DXL code.

getLinkFilterSettings_

Declaration

bool getLinkFilterSettings (Module,
Filter,
bool& mustHave,
int& 1inkType,

string& linkModuleName)

Operation

Gets details of the specifed link filter in the return parameters. The function returns false if the filter is not a valid link
filter.

The 1inkType parameter returns a value that maps directly to the appropriate combo box.

The 1inkModuleName parameter returns an asterisk if links are allowed through any module, or the module name.

getObjectFilterSettings_

Declaration
bool getObjectFilterSettings (Module,
Filter,

int& objectFilterType)

Operation

Gets details of the specified object filter in the return parameter. The function returns false if the filter is not a valid
object filter.

The objectFilterType parameter returns a value that maps directly to the radio group on the dialog.

getColumnFilterSettings_

Declaration
bool getColumnFilterSettings (Module,

Filter,

DXL Reference Manual

65

string& columnName,
string& comparisonValue,
bool& matchCase,

bool& useRegExp)

Operation

Gets details of the specified column filter in the return parameters. The function returns false if the filter is not a valid

column filter.

Compound Filters

These perms can be used to decompose compound filters into their component parts for analysis, and potential
modification or replacement.

See examples in “Compound filters” on page 658.

getCompoundFilterType__

Declaration
int getCompoundFilterType (Filter)

Operation

Returns an integer value indicating the type of the specified filter.

It returns one of the following new DXL constant values for compound filter types:
int filterTypeAnd

int filterTypeOr

int filterTypeNot

It returns -1 for a simple filter. The test for a negative value suffices to indicate that the filter is not compound, as the new

constants are all positive values.

If no filter is supplied, a run-time DXL error is generated.

getComponentFilter_

Declaration

Filter getComponentFilter_(Filter, int index)

Operation

Returns an integer value indicating the type of the specified filter.

DXL Reference Manual

It returns one of the following new DXL constant values for compound filter types:
int filterTypeAnd

int filterTypeOr

int filterTypeNot

This perm teturns a component filter that is part of the supplied compound filter. If the compound filter is of type
filterTypeNot, the index must be zero, or the perm returns null. If the compound filter is of type
filterTypeOror filterTypeAnd, anindex of 0 or 1 returns the first or second sub-filter, and any other index
value returns null.

If the supplied filter is not a compound filtet, the perm returns null.

If no filter is supplied, a run-time DXL error is generated.

Localizing DXL

Rational DOORS uses ICU resource bundles for accessing translated strings. DXL perms are available to access ICU
resource bundles containing translated strings for customized DXL. For information about creating ICU resource bundles,

see http://userguide.icu-project.org/locale/localizing.

Put the language resource files in a directory whose name is taken as the bundle name, under

$DOORSHOME/ language,for example SDOORSHOME /language/myResource/de DE.res. There are two
bundles already shipped with Rational DOORS, core and DXL.)

LS

Declaration
string LS (string key, string fallback, string bundle)

Operation

Returns the string from resource bundle that is identified by key. If the string identified by key is not found in the resource
bundle, the fallback string is returned.

Example

de.txt file contains;

de {
Keyl{"Ausgehend"}
Key2{"Ausgehende Links"}
Key3{"Normalansicht"}

Key4{"Klartext"}

DXL Reference Manual

67

From the command line, generate a resource bundle, for example genrb de.txt, and copy the resource bundle to
$DOORSHOME /language/myResource/, where myResource is the name of your resource bundle. The localized
strings can then be accessed using the LS perm, for example in the DXL editor, type:

print LS ("Keyl",

print LS ("Key2",

print LS ("Key3",

print LS ("Key4",
The output is:

Ausgehend

Ausgehende Links
Normalansicht

Klartext

"Ausgehend not found", "myResource") "\n"

"Ausgehende Links not found", "myResource") "\n"

"Normalansicht not found", "myResource") "\n"

"Klartext not found", "myResource") "\n"

Finding links

for each incoming link

Syntax

(LinkRef)
linkModuleName)

for in Object

do {

} ce

where:
LinkRef
tgtObject

1inkModuleName

Operation

tgtObject<-string

is a variable of type Link or LinkRef
is a variable of type Object

is a string variable

Assigns the variable LinkRef to be each successive incoming link arriving at object tgtObject via link module named
linkModuleName. The string 1inkModuleName can be a specific link module name, or the string " * " meaning any

link module.

Iterates through all incoming link references including those from baselines and soft-deleted modules.

Note:
not detected.

This loop only assigns to LinkRe f incoming link values for which the source object is loaded; unloaded links are

DXL Reference Manual

Example
LinkRef 1

for (1) in current Object<-"*" do {
string user = 1."Created By"
print user "\n"

for each source

Syntax

for (srcModName) in Object tgtObject<-string
linkModName) do {

}

where:
srcModName is a string variable
tgtObject is a variable of type Object
1inkModName is a string variable
Operation

Assigns the variable srcModName to be the unqualified name of the source module of each successive incoming link
arriving at object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a
specific link module name, or the string " *" meaning any link module.

Includes links from baselines and soft-deleted modules, returning the name of the source module (without baseline version
numbers).

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

Example

This example prints the unqualified name of all the source modules for incoming links to the cutrent object:
Object o = current

string srcModName

for (srcModName) in o<-"*" do print srcModName "\n"

DXL Reference Manual

for each source reference

Syntax

for (srcModRef) in Object tgtObject<-string
linkModName) do {

}

where:
srcModRef is a variable of type ModName
tgtObject is a vatiable of type Object
1inkModName is a string variable

Operation

Assigns the variable srcModRef to be the reference of the source module of each successive incoming link arriving at
object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a specific link
module name, or the string " * " meaning any link module.

Includes links from baselines and soft-deleted modules.

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

Example
ModName srcModRef
for (srcModRef) in o<=-"*" do

read (fullName (srcModRef), false)

Links

getlegacyURL

Declaration
string getLegacyURL (object o)

Operation

This perm returns the legacy Rational DOORS URL. The legacy URL contains the protocol as "doors". This URL can then
be decoded using decodeURL.

DXL Reference Manual

Example

ModuleVersion mv

int objectAbsno

Item i

string dbHost = null
int dbPort

string dbName

string dbID = null

string objUrl = getURL (current Object)

string legacyUrl

string errorMsg

errorMsg = getLegacyURL (objUrl, legacyUrl)
if (!null errorMsgqg)

{

print errorMsg "\n"

else

errorMsg = decodeURL (legacyUrl, dbHost, dbPort, dbName, dbID, i, mv,
objectAbsno)

}
if(!null errorMsgqg)
{

print errorMsg "\n"

else
{

print "Original URL - " objUrl "\nDB Host - " dbHost "\n"

print "DB Port - " dbPort "\nDB Name - " dbName "\nDB Id - " dbId
"\nAbsolute Number - " objectAbsno "\n"

}

DXL Reference Manual

Chapter 8

New in DXL for Rational DOORS 9.2

This chapter describes features that are new in Rational DOORS 9.2:
* Additional authentication

* Dialog box updates

* New constants

* Partitions updates

* Requirements Interchange Format (RIF)

Additional authentication

getAdditionalAuthenticationEnabled

Declaration

bool getAdditionalAuthenticationEnabled()

Operation

Returns true if enhanced security users need to perform additional authentication during login. Only relevant when

authentication is being controlled via RDS.

getAdditionalAuthenticationPrompt

Declaration

string getAdditionalAuthenticationPrompt ()

Operation

Returns the label under which additional authentication is requested, if enhanced security is enabled, for example the label

for the second “password” field. Only relevant when authentication is being controlled via RDS.

getSystemLoginConformityRequired

Declaration

bool getSystemLoginConformityRequired ()

DXL Reference Manual

7

72

Operation

Returns true if enhanced security users have there system login verified when logging in. Only relevant when
authentication is being controlled via RDS.

getCommandLinePasswordDisabled

Declaration

bool getCommandLinePasswordDisabled ()

Operation

Return true if the =P command line password argument is disabled by default.

setCommandLinePasswordDisabled

Declaration

string setCommandLinePasswordDisabled (bool)

Operation

Sets whether the —P command line password argument is disabled by default. Supplying t rue disables the option by
default.

Dialog box updates

toolBarComboGetEditBoxSelection

Declaration

string toolBarComboGetEditBoxSelection (DBE toolbar, int index)

Operation

Returns the selected text from the editable combo box in toolbar where index is the combo box index.

toolBarComboCutCopySelectedText

Declaration
void toolBarComboCutCopySelectedText (DBE toolbar, int index, bool cut)

DXL Reference Manual

73

Operation

Cuts, or copies, the selected text in the editable combo box in toolbar atlocation index. If cut is true, the selected
text is cut to the clipboard. Otherwise, it is copied.

toolBarComboPasteText

Declaration

void toolBarComboPasteText (DBE toolbar, int index)

Operation

Pastes text from the clipboard into the combo box located at index in toolbar. Replaces selected text if there is any.

hasFocus

Declaration
bool hasFocus (DBE toolbar)

Operation

Returns true if the supplied toolbar DBE contains an element that currently has the keyboard focus. Otherwise,
returns false.

setDXLWindowAsParent

Declaration
void setDXLWindowAsParent (DB dialogq)

Operation

Sets the DXL interaction window to be the parent of dialog. If there is no DXL interaction window, the parent is set to
null.

New constants

mayUseCommandLinePassword

Declaration

bool mayUseCommandLinePassword

DXL Reference Manual

74

Operation

Boolean property of a User. When command line passwords are disabled by default, this returns t rue if they have been
enabled for the given User. Otherwise, returns false.

additionalAuthenticationRequired

Declaration

bool additionalAuthenticationRequired

Operation

Boolean property of a User. Returns true if the User needs to perform additional authentication during login. Only
relevant when authentication is performed via RDS.

iconAuthenticatingUser

Declaration

Icon iconAuthenticatingUse

Operation

The icon used to represent a user requited to perform additional authentication during login.

Partitions updates

addAwayModule

Declaration

string addAwayModule (PartitionDefinition pd, string modName[, string partName])

Operation
Used to add a formal module to a partition in the away database.

The new, optional parameter can be used to specify the partition name where it may vary from the definition name.

addAwayLinkModule

Declaration

string addAwayLinkModule (PartitionDefinition pd, string modName[, string
partName])

DXL Reference Manual

75

Operation
Used to add a link module to a partition in the away database.

The new, optional parameter can be used to specify the partition name where it may vary from the definition name.

Requirements Interchange Format (RIF)

exportType

Declaration
void initRIFExport (ExportType)

Operation
Sets the export type to be either RIF or ReqlF. Call this before using the exportPackage method.

example

initRIFExport (exportRIF 1 2)// Sets the export to be RIF

initRIFExport (exportReqlIF)// Sets the export to be ReqlF

exportPackage

Declaration

string exportPackage (RifDefinition def, Stream RifFile, DB parent, bool& cancel)

Operation

Exports def to the XML file identified by Ri fFile. The stream must be have been opened for writing using “write
(filename, CP _UTF8)”.1f parent is null then a non-interactive operation is performed. Otherwise, progress bars
will be displayed.

If an interactive export is performed, and is cancelled by the user, cancel will be set to true.

importRifFile

Declaration

string importRifFile(string RifFilename, Folder parent, string targetName,
string targetDesc, string RifDefName, string RifDefDescription, DB parent)

Operation

Performs a non-interactive import of R1 fFileName, placing the imported modules in a new folder in the specified
parent. The new folder name and description ate specified by targetName and targetDesc.

DXL Reference Manual

rifiMerge

Declaration

string rifMerge (RifImport mrgObj, DB parent)

Operation

Performs a non-interactive merge using the information in mrgOb3.

RifDefinition

A RifDefinition is the object in which a package to be exported in RIF format is defined.

Properties are defined for use with the . (dot) operator and a R1fDefinition handle to extract information from a
definition, as shown in the following syntax:

variable.property

where:
variable is a variable of type RifDefinition.
property is one of the following properties.

The following tables list the RifDefinition properties and the information they extract or specify

String property Extracts
name The name of the definition.
description The desctiption of the definition.

rifDefinitionIdentifer The unique ID of the RIF definition (this is shared between databases, unlike the
name and description).

boolean property Extracts

createdLocally Returns true if the definition was created in the local database, as opposed to being
imported.

canModify Returns true if the correct user can modify the definition.

Project property Extracts

project The project which contains the definition.

DXL Reference Manual

7

RifModuleDefinition

A RifModuleDefinition is an object which contains the details of how a module should be exported, as part of a
RIF package.

Properties are defined for use with the . (dot) operator and RifModuleDefinition handle to extract information
from, a definition record, as shown in the following syntax:

variable.property

where:
variable is a variable of type R1 fModuleDefinition.
property is one of the properties below.

The following tables list the R1 fModuleDefinition properties and the information they extract or specify:

String property Extracts

dataConfigView The name of the view used to define which data in the module will be included in the RIF
export.

ddcView The name of the view used to define what data can be edited when the exported RIF package
is imported into another database.

bool property Extracts

createdLocally Whether the module was added to the RifDefinition in the current database or not.
ModuleVersion Extracts

property

moduleVersion The ModuleVersion reference for the given RifModuleDefinition.
Ddcmode property Extracts

ddcMode The type of access control used to define whether the module, or its contents, will be

editable in each database once it has been exported.

DXL Reference Manual

DdcMode constants

DdcMode constants define the type of access control used define whether a module, or its contents, will be editable in each
of the local and target database once the export has taken place. The following table details the possible values, and their

meanings.
Constant Meaning
ddcNone Module will be editable in both source and target databases.
ddcReadOnly Module will be editable in only the soutce database.
ddcByObject Selected objects in the module will be made read-only in the source database.
ddcByAttribute Selected attributes in the module will be made read-only in the source database.
ddcFullModule Module will not be editable.
Riflmport

A RifImport is an object which contains information on a RIF import. These are created by import operations, and are
persisted in a list in the stored RifDefinition.

Properties are defined for use with the . (dot) operator and a RifImport handle to extract information from, or specify
information in an import record, as shown in the following syntax:

variable.property

where:
variable is a vatiable of type RifImport.
property is one of the properties.

The following tables list the Riflmport properties and the information they extract or specify :

bool property Extracts

mergeStarted Returns true when a merge operation is started.
mergeCompleted Returns true when the merge has been completed.
mergeRequired Returns true when an import is a valid candidate for merging.
mergeDisabled Returns true if the merge has been disabled due to lock removal.
User property Extracts

importedBy Returns the user who performed the import.

DXL Reference Manual

79

User property Extracts

mergedBy Returns the user who preformed the merge.

Folder property Extracts

folder Returns the folder containing the imported data. On import, a DXL script is expected to
iterate through the contents of this folder, merging all items which have RIF IDs, and which
are persisted in this folder.

Date property Extracts

exportTime Returns the time the export was performed. Note that this is the timestamp derived from the
creationTime element of the header in the imported RIF package. Merges should be
performed in the order in which the data was exported, rather than the order in which the
packages were imported.

importTime Returns the date that the import folder was created.

mergeTime Returns the date that the merge of the import folder was completed, or started if it has not
yet been completed.

RifDefinition property Extracts

definition Returns the RifDefinition with which the import is associated.

for RifDefinition in Project

Syntax

for rifDef in proj do {

J
Operation

Assigns rifDef to be each successive RifDefinitionin Project proj.

for RifModuleDefinition in RifDefinition

Syntax

for rifModDef in rifDef so {

DXL Reference Manual

80

Operation

Assigns rifModDef to be each successive RifModuleDefinitionin RifDefinition rifDef.

for Riflmport in RifDefinition

Syntax

for rifImp in rifDef do {

}
Operation

Assigns rifImp to be each successive rifImportinRifDefinition rifDef.

Examples

The following example dumps all information about all RIF definitions in the current project to the screen. It then
conditional exports one of the packages.

RifDefinition rd

RifModuleDefinition rmd

Stream stm = write ("C:\\Public\\rifExport.xml", CP_UTFS8)
string s = ""

bool b

Project p = current

Project p2

ModuleVersion mv

DB myDB = null

DdcMode ddcm
for rd in p do {
print rd.name "\n"
print rd.description "\n"

print rd.rifDefinitionIdentifier "\n"

if (rd.createdLocally) {

DXL Reference Manual

print "Local DB\n"

if (rd.canModify) {

print "May be modified by current user\n"

p2 = rd.project

print fullName p "\n"

for rmd in rd do {

print "\nModules present in definition :\n"

mv = rmd.moduleVersion

print fullName mv "\t"

print rmd.dataConfigView "\t"

print rmd.ddcView "\t"

if (rmd.createdLocally) {

print "Home DB.\n"

ddcm = rmd.ddcMode

if (ddcm == ddcFullModule) {

print "Module will not be editable once definition is exported.\n"

} else if (ddcm == ddcByObject) {

DXL Reference Manual

81

82

print "Selected objects will be locked in the local database once the
definition is exported.\n"

} else if (ddcm == ddcByAttribute) {

print "Selected attributes will be locked in the local database once
the definition is exported.\n"

} else if (ddcm == ddcReadOnly) {

print "Module will only be editable in the local database once
definition is exported.\n"

} else if (ddcm == ddcNone) {

print "Module will be fully editable in both local and target
databases when definition is exported.\n"

if (rd.name == "RifDefl") {

s = exportPackage (rd, stm, myDB, b)

if (s 1= ")

print "Error occurred : " s "\n"

}

The following example dumps all information about all RIF imports in the current project. It then merges those imports
where required.

DXL Reference Manual

RifImport ri

RifDefinition rd

Project p = current

User importer, merger

string importerName, mergerName, res
Folder f

Skip dates = create

for rd in p do {

for ri in rd do {

rd = ri.definition

print rd.name "\n"

f = ri.folder

print "Located in : " fullName f

print "\n"

importer = ri.importedBy

importerName = importer.name
print "Imported by : " importerName "\n"
print "Imported on : " ri.importTime "\n"

if (ri.mergeStarted && !ri.mergeCompleted) ({

print "Merge started on : " ri.mergeTime "\n"

} else if (ri.mergeCompleted) {

print "Merge completed on : " ri.mergeTime "\n"

DXL Reference Manual

83

84

if (ri.mergeRequired) {

print "Merge required.\n"

res = rifMerge (ri, null)

print "Merging result " res "\n"
} else {

merger = ri.mergedBy

print "Merged by : " mergerName "\n"

if (ri.mergeDisabled) {

print "Merge disabled,

}

print "\n"

DXL Reference Manual

locks removed.\n"

Chapter 9

New in DXL for Rational DOORS 9.1

This chapter describes features that are new in Rational DOORS 9.1:

* Regular Expressions

Regular Expressions

regexp2

Declaration

Regexp regexp?2 (string expression)

Operation

Creates a regular expression. Its behavior will not be changed to match the legacy behavior of regexp () . Should be used
in all new regular expression code.

DXL Reference Manual

85

86

DXL Reference Manual

87

Chapter 10

New in DXL for Rational DOORS 9.0

This chapter describes features that are new in Rational DOORS 9.0:
* Discussions

* Descriptions

¢ Filtering

« HTML

¢ Miscellaneous

Discussions

¢ Discussion Types
* Properties

* Iterators

e Operations

e Triggers

* Example

Discussion Types

Discussion

Represents a discussion.

Comment

Represents a comment in a discussion.

DiscussionStatus

Represents the status of a discussion. The possible values are Open and Closed.

DXL Reference Manual

88‘

Properties

The following tables describe the properties available for the discussion and comment types. Property values can be
accessed using the . (dot) operator, as shown in the following syntax:

variable.property

where:
variable is a variable of type Discussion or Comment
property is one of the discussion or comment properties
Discussion

Property Type Extracts

status DiscussionStatus The status of the discussion: whether it is open or
closed.

summary string The summary text of the discussion, which may be
null

createdBy User The user who created the discussion, if it was
created in the current database. Otherwise it
returns null.

createdByName string The name of the user who created the discussion,
as it was when the discussion was created.

createdByFullName string The full name of the user who created the
discussion, as it was when the discussion was
created.

createdOn Date The date and time the discussion was created.

createdDataTimestamp Date The last modification timestamp of the object or
module that the first comment in the discussion
referred to.

lastModifiedBy User The user who added the last comment to the
discussion, or who last changed the discussion
status

lastModifiedByName string The user name of the user who added the last

comment to the discussion, or who last changed
the discussion status.

DXL Reference Manual

89

Property

Type

Extracts

lastModifiedByFullName

lastModifiedOn

lastModifiedDataTimestamp

firstVersion

lastVersion

firstVersionIndex

lastVersionIndex

string

Date

Date

ModuleVersion

ModuleVersion

string

string

The full name of the user who added the last
comment to the discussion, or who last changed
the discussion status.

The date and time the last comment was added, or
when the discussion status was last changed.

The last modification timestamp of the object or
module that the last comment in the discussion
referred to.

The version of the module the first comment was
raised against.

Note: If a comment is made against the current
version of 2 module and the module is
then baselined, this property will return a
reference to that baseline. If the baseline
is deleted, it will return the deleted
baseline.

The version of the module the latest comment was
raised against. See note for the firstVersion
property above.

The baseline index of the first module version
commented on in the discussion. Can be used in
compatrisons between module versions.

The baseline index of the last module version
commented on in the discussion. Can be used in
comparison between module versions.

DXL Reference Manual

Comment

Property Type Extracts

text string The plain text of the comment.

moduleVersionIndex string The baseline index of the module version against which the
comment was raised. Can be used in comparisons between
module versions.

status DiscussionStatus The status of the discussion in which the comment was made.

moduleVersion ModuleVersion The version of the module against which the comment was
raised.

Note: If a comment if made against the current version of a
module and the module is then baselined, this
property will return a reference to that baseline. If the
baseline is deleted, it will return the deleted baseline.

onCurrentVersion bool True if the comment was raised against the current version of
the module or an object in the current version.

changedStatus bool Tells whether the comment changed the status of the
discussion when it was submitted. This will be true for
comments that closed or re-opened a discussion.

dataTimestamp Date The last modified time of the object or module under
discussion, as seen at the commenting users client at the time
the comment was submitted.

createdBy User The user that created the comment. Returns null if the user is
not in the current user list.

createdByName string The user name of the user who created the comment, as it was
when the comment was created.

createdByFullName string The full name of the user who created the comment, as it was
when the comment was created.

createdOn Date The data and time when the comment was created.

discussion Discussion The discussion containing the comment.

Ilterators

DXL Reference Manual

91

for Discussion in Type

Syntax
for disc in Type do {
}
where:
disc is a variable of type Discussion
Type is a vatiable of type Object, Module, Project or
Folder
Operation

Assigns the variable disc to be each successive discussion in Type in the order they were created. The first time it is run
the discussion data will be loaded from the database.

The Module, Folder and Project variants will not include discussions on individual objects.

The Folder and Project variants are provided for forward compatibility with the possible future inclusion of
discussions on folders and projects. They perform no function in Rational DOORS 9.0.

for Comment in Discussion

Syntax
for comm in disc do {
}
where:
comm is a variable of type Comment
disc is a vatiable of type Discussion
Operation

Assigns the variable comm to be each successive comment in disc in chronological order. The first time it is run on a
discussion in memory, the comments will be loaded from the database. Note that if a discussion has been changed by a
refresh (e.g. in terms of the last Comment timestamp) then this will also refresh the comments list.

The discussion properties will be updated in memory if necessary, to be consistent with the updated list of comments.

DXL Reference Manual

92‘

Operations

create(Discussion)

Declaration

string create(target, string text, string summary, Discussioné& disc)

Operation

Creates a new Discussion about target, which can be of type Object or Module. Returns null on success, error
string on failure. Also add text as the first comment to the discussion.

addComment

Declaration

string addComment (Discussion disc, target, string text, Commenté& comm)

Operation

Adds a Comment about target to an open Discussion. Note that target must be an Object or Module that
the Discussion already relates to. Returns null on success, etror string on failure.

closeDiscussion

Declaration

string closeDiscussion (Discussion disc, target, string text, Comment& comm)

Operation

Closes an open Discussion disc by appending a closing comment, specified in text. Note that target must be an
Object or Module that disc already relates to. Returns null on success, error string on failure.

reopenDiscussion

Declaration

string reopenDiscussion (Discussion disc, target, string text, Comment& comm)

Operation

Reopens a closed Discussion disc and appends a new comment, specified in text. Note that target must be an
Object or Module that disc already relates to. Returns null on success, error string on failure.

DXL Reference Manual

93

deleteDiscussion

Declaration

string deleteDiscussion (Discussion d, Module m|Object o)

Operation

Deletes the specified module or object discussion if the user has the permission to do so. Returns null on success, or an

error string on failure.

sortDiscussions

Declaration

void sortDiscussions ({Module m|Object o|Project p|Folder f}, property, bool
ascending)

Operation

Sorts the discussions list associated with the specified item according to the given property, which may be a date, or a
string propetty as listed in the discussions properties list. String sorting is performed according to the lexical ordering for the
current user’s default locale at the time of execution.

If the discussion list for the specified item has not been loaded from the database, this perm will cause it to be loaded.

The Folder and Project forms are provided for forward compatibility with the possible future inclusion of discussions
on folders and projects. They perform no function in 9.0.

getDiscussions

Declaration

string getDiscussions ({Module m|Object o|Project p|Folder f})

Operation

Refreshes from the database the Discussion data for the specified item in memory. Returns null on success, or an error

on failure.

getObjectDiscussions

Declaration

string getObjectDiscussions (Module m)

Operation

Refreshes from the database all Di scussions for all objects in the specified module. Returns null on success, or an error

on failure

DXL Reference Manual

getComments

Declaration

string getComments (Discussion d)

Operation

Refreshes from the database the comments data for the specified Discussion in memory. Returns null on success, or an

error on failure.

Note: The Discussion properties will be updated if necessary, to be consistent with the updated comments list.

mayModifyDiscussionStatus

Declaration

bool mayModifyDiscussionStatus (Discussion d, Module m)

Operation

Checks whether the current user has rights to close or re-open the specified discussion on the specified module.

baselinelndex

Declaration

string baselinelIndex (Module m)

Operation
Returns the baseline index of the specified Module, which may be a baseline or a current version. Can be used to tell

whether a Comment can be raised against the given Module data in a given Discussion.

Note: A Comment cannot be raised against a baseline index which is less than the lastVersionIndex property of

the Discussion.

Triggers

Trigger capabilities have been expanded so that triggers can now be made to fire before or after a Discussion ora

Comment is created.

As follows:

pre post

Comment X X

DXL Reference Manual

95

pre post

Discussion X X

comment

Declaration

Comment comment (Trigger t)

Operation

Returns the Comment with which the supplied Trigger is associated, null if not a Comment trigger.

discussion

Declaration

Discussion discussion (Trigger t)

Operation

Returns the Discussion with which the supplied Trigger is associated, null if not a Discussion trigger.

dispose(Discussion/Comment)

Declaration

void dispose ({Discussioné& d|Commenté& c})

Operation

Disposes of the supplied Comment or Discussion reference freeing the memory it uses.

Can be called as soon as the reference is no longer required.

Note: The disposing will take place at the end of the current context.

Example

// Create a Discussion on the current Module, with one follow-up Comment...

Module m = current
Discussion disc = null

create(m,"This is my\nfirst comment.","First summary",disc)

Comment cmt

DXL Reference Manual

96

addComment (disc, m, "This is the\nsecond comment.", cmt)

// Display all Discussions on the Module
for disc in m do
{
print disc.summary " (" disc.status ")\n"
User u = disc.createdBy
string s = u.name
print "Created By: " s "\n"
print "Created By Name: \"" disc.createdByName "\"\n"
print "Created On: " stringOf (disc.createdOn) "\n"
u = disc.lastModifiedBy
S = u.name

print "Last Mod By: " s "\n"

print "Last Mod By Name: \"" disc.lastModifiedByName "\"\n"

print "Last Mod On " stringOf (disc.lastModifiedOn) "\n"

print "First version: " (fullName disc.firstVersion) "
(versionString disc.firstVersion) "]\n"

print "Last version: " (fullName disc.lastVersion) " ["
(versionString disc.lastVersion) "]\n"

Comment c

for ¢ in disc do

{

print "Comment added by " (c.createdByName) " at " //-
(stringOf (c.createdOn)) ":\n"

print "Module Version: " (fullName c.moduleVersion) "
(versionString c.moduleVersion) "]\n"

print "Data timestamp: " (stringOf c.dataTimestamp) "\n"
print "Status: " c.status " (" (c.changedStatus ? "Changed"

"Unchanged") ")\n"

print "On current: " c.onCurrentVersion "\n"
print c.text "\n"

}

DXL Reference Manual

Descriptions

This section desctibes the DXL support in Rational DOORS for the new desctiption functionality.
* View Descriptions
e Attribute Type Descriptions

* Attribute Definition Descriptionss

View Descriptions

setViewDescription

Declaration

void setViewDescription (ViewDef vd, string desc)

Operation

Sets the description for a view where vd is the view definition handle.

getViewDescription

Declaration

string getViewDescription (ViewDef vd)

Operation

Returns the description for a view where vd is the view definition handle.

Attribute Type Descriptions

setDescription

Declaration
AttrType setDescription (AttrType at, string desc, string &errMess)

Operation

Sets the description for the specified attribute type. Returns null if the description is not successfully updated.

DXL Reference Manual

97

modify

Declaration

AttrType modify (AttrType at, string name, string codes[], int values, int
colors, string descs[], [int arrMaps/[],] string &errMess)

Operation

Modifies the supplied attribute type with the corresponding values and descriptions. Can be used to update the descriptions
of old enumeration types.

The optional arrMaps argument specifies existing index values for enumeration values, taking into consideration their
re-ordering.

create

Declaration

AttrType create(string name, string codes[], int values[], int colors[], string
descs[], string &errMess)

Operation

The new descs [] argument enables the creation of a new enumeration based attribute type, whose enumerations use
those descriptions. Returns null if creation is not successful.

description property

Both attribute types themselves, and the enumeration values they may contain, have a new description property. It can
be accessed by using the dot (.) operator.

Example
AttrType at
string desc

int i

//To get the description of the attribute type

desc = at.description

//To get the description of the enumeration values with index i

desc = at.description[i]

DXL Reference Manual

99

Attribute Definition Descriptions

description property

Attribute definitions can now contain a description property. It can be accessed by using the dot (.) operator.
Example

Module m = current

AttrDef ad = find(m, "AttrName")

print ad.description

description(create)

Attribute definition descriptions can be specified during their creation.
Example
AttrDef ad = create object (description “My description”) (type “string”) //-

(default “defvalue”) (attribute "AttrName")

description(modify)

Attribute definition descriptions can be altered by using the modify perm is one of the following ways. Note the new
setDescription property constant.

Example1

Module m = current

AttrDef ad = find(m, "AttrName")

modify (ad, module (description “New Description”) (type “string”) //-

(default “New default”) (attribute “New Name”))

Example2
Module m = current
AttrDef ad = find(m, "AttrName")

modify (ad, setDescription, “New description text”)

DXL Reference Manual

100‘

Filtering

This section describes the DXL support in Rational DOORS for the new module explorer filtering functionality added in
Rational DOORS 9.0.

applyFiltering

Declaration
void applyFiltering (Module)

Operation

Sets the module explorer display to reflect the current filter applied to the specified module.

unApplyFiltering

Declaration
void unApplyFiltering (Module)

Operation

Switches off filtering in the module explorer for the specified module.

applyingFiltering

Declaration
bool applyingFiltering (Module)

Operation

Returns a boolean indicating whether filtering is turned on in the module explorer for the specified module.

HTML

This section desctibes the DXL support the HTML functionality added in Rational DOORS 9.0.
* HTML Control
* HTML Edit Control

DXL Reference Manual

101

HTML Control

The section desctibes the DXL support for the HTML control added in Rational DOORS 9.0.

Note: Some of the functions listed below take an ID string parameter to identify either a frame or an HTML element. In
each of these methods, frames or elements nested within other frames are identified by concatenating the frame
IDs and element IDs as follows: <top frame ID>/[<sub frame ID>/...]<element ID>.

In methods requiring a frame ID, passing null into this parameter denotes the top level document.

These methods refer to all frame types including IFRAME and FRAME eclements.

htmlView

Declaration

DBE htmlView (DB parentDB, int width, int height, string URL, bool

before navigate cb(DBE element, string URL, string frame, string postData), void
document complete cb(DBE element, string URL), bool navigate error cb (DBE
element, string URL, string frame, int statusCode), void progress_cb (DBE
element, int percentage))

Operation

Creates an HTML view control where the arguments are defined as follows:

arentDB The dialog box containing the control.

P g g

width The initial width of the control.

height The initial height of the control.

URL The address that will be initially loaded into the control. Can be

null to load a blank page (about:blank).

DXL Reference Manual

102

parentDB

before navigate cb

document complete cb

navigate error cb

progress cb

DXL Reference Manual

The dialog box containing the control.

Fires for each document/ frame before the HTML window/ frame
navigates to a specified URL. It could be used, amongst other
things, to intercept and process the URL prior to navigation,
taking some action and possibly also navigating to a new URL.

The return value determines whether to cancel the navigation.
Returning false cancels the navigation.

Its arguments are defined as follows:

* element: The HTML control itself
e URL: The address about to be navigated to.

* frame: The frame for which the navigation is about to take
place.

* postData: The data about to be sent to the server if the
HTTP POST transaction is being used.

Fires for each document/frame once they are completely loaded
and initialized. It could be used to start functionality required after
all the data has been received and is about to be rendered, for
example, parsing the HTML document.

Its arguments are defined as follows:

¢ element: The HTML control itself
¢ URL: The loaded address.

Fires when an error occurs during navigation. Could be used, for
example, to display a default document when internet connectivity
is not available.

The return value determines whether to cancel the navigation.
Returning false cancels the navigation.

Its arguments are defined as follows:

¢ elements: The HTML control itself.
* URL: The address for which navigation failed.
e frame: The frame for which the navigation failed.

¢ statusCode: Standard HTML error code.

Used to notify about the navigation progress, which is supplied as
a percentage.

103

set(html callback)

Declaration

void set (DBE HTMLView, bool event cb(DBE element, string ID, string tag, string
event type))

Operation

Attaches a callback to HTML control element that receives general HTML events. The ID argument identifies the
clement that sourced the event, the tag argument identifies the type of element that sourced the event, and the
event type argument identifies the event type. Note that the only event types currently supported are c1ick and
dblclick.

If this function is used with an incorrect DBE type, a DXL runtime error occurs.

set(html URL)

Declaration

void set (DBE HTMLView, string URL)

Operation
Navigates the given HTMLView to the given URL.

Can only be used to navigate the top level document and cannot be used to navigate nested frame elements.

setURL

Declaration
void setURL(DBE HTMLView, string ID, string URL)

Operation
Navigates the frame identified by ID to the given URL. The ID may be null.

getURL

Declaration
string getURL (DBE HTMLView, string ID)

Operation
Returns the URL for the currently displayed frame as identified by its ID. The ID may be null.

DXL Reference Manual

104‘

get(HTML view)

Declaration
string get (DBE HTMLView)

Operation
Returns the URL currently displayed in the given HTMLV1i ew, if there is one.

get(HTML frame)

Declaration
Buffer get (DBE HTMLView, string ID)

Operation
Returns the URL for the currently displayed frame as identified by its ID.

set(HTML view)

Declaration
string set (DBE HTMLView, Buffer HTML)

Operation

Sets the HTML fragment to be rendered inside the <body> tags by the HTML view control directly. This enables the
controls HTML to be constructed dynamically and directly rendered.

setHTML

Declaration
string setHTML (DBE HTMLView, string ID, Buffer HTML)

Operation

Sets the HTML fragment to be rendered inside the <body> tags by the HTML view controls frame as identified by ID.
This enables the HTML of the given document or frame to be constructed dynamically and directly rendered.

Note: The contents of the frame being modified must be in the same domain as the parent HTML document to be
modifiable. A DXL error will be given on failure (for example, if the wrong type of DBE is supplied).

DXL Reference Manual

105

getHTML

Declaration
Buffer getHTML (DBE HTMLView, string ID)

Operation

Returns the currently rendered HTML fragment inside the <body> tags of the document or frame as identified by its ID.

getBuffer

Declaration
Buffer getBuffer (DBE HTMLView)

Operation

Returns the currently rendered HTML.

getinnerText

Declaration
string getInnerText (DBE HTMLView, string ID)

Operation

Returns the text between the start and end tags of the first object with the specified ID.

setlnnerText

Declaration
void setInnerText (DBE HTMLView, string ID, string text)

Operation

Sets the text between the start and end tags of the first object with the specified ID.

getlnnerHTML

Declaration
string getInnerHTML (DBE HTMLView, string ID)

Operation

Returns the HTML between the start and end tags of the first object with the specified ID.

DXL Reference Manual

106

setinnerHTML

Declaration

void setInnerHTML (DBE HTMLView, string ID, string html)

Operation
Sets the HTML between the start and end tags of the first object with the specified ID.

Note: The innerHTML property is read-only on the col, colGroup, framSet, html, head, style, table,
tBody, tFoot, tHead, title, and tr objects.

getAttribute

Declaration
string getAttribute (DBE element, string ID, string attribute)

Operation

Retrieves the value for the requested attribute of the first object with the specified value of the ID attribute. If the attribute
does not exist, null is returned.

Returns null on success. Returns error string on failure, for example if the wrong type of DBE is passed in.

setAttribute

Declaration
void setAttribute (DBE element, string ID, string attribute)

Operation

Sets the value of the requested attribute for the first object with the specified value of the ID attribute. If the attribute does
not exist, it is added to the object.

Displays a DXL error on failure, for example if the wrong type of DBE is passed in.

Example

DB dlg
DBE htmlCtrl
DBE htmlBtn

DBE html

void onTabSelect (DBE whichTab) {

DXL Reference Manual

void

void

void

void

void

void

int selection = get whichTab

onSetHTML (DBE button) {

Buffer b = create

string s get (htmlCtrl)
print s

b =s

set (html, b)

delete b

onGetInnerText (DBE button) {
string s = getlInnerText (html,

confirm(s)

onGetInnerHTML (DBE button) {
string s = getInnerHTML (html,

confirm(s)

onGetAttribute (DBE button) {
string s = getAttribute (html,

confirm(s)

onSetInnerText (DBE button) {
Buffer b = create

string s = get (htmlCtrl)

setInnerText (html, "Text", s)

onSetInnerHTML (DBE button) {

"Text")

"Text")

"Text" ,

"Aligl’l")

DXL Reference Manual

107

108

Buffer b = create
string s = get (htmlCtrl)

setInnerHTML (html, "Text", s)

volid onSetAttribute (DBE button) {

Buffer b = create

string s = getAttribute (html, "Text", "Align")

if (s == "left"){
s = "center"

}

else if (s == "center") {
s = "right"

}

else if (s == "right") {

s = "left"

setAttribute (html, "Text", "align", s)

bool onHTMLBeforeNavigate (DBE dbe, string URL,

string frame, string body) {

string buttons[] = {"OK"}

string message = "Before navigate - URL: " URL "\r\nFrame: " frame
"\r\nPostData: " body "\r\n"

print message ""

return true
}
void onHTMLDocComplete (DBE dbe, string URL) {

string buttons[] = {"OK"}

string message = "Document complete — URL: " URL "\r\n"

print message ""

string s = get (dbe)

DXL Reference Manual

print "url: " s "\r\n"

bool onHTMLError (DBE dbe, string URL, string frame, int error) {
string buttons[] = {"OK"}

string message = "Navigate error - URL: " URL "; Frame: " frame
error "\r\n"

print message ""

return true

void onHTMLProgress (DBE dbe, int percentage) {
string buttons[] = {"OK"}
string message = "Percentage complete: " percentage "%$\r\n"
print message

return true

dlg = create("Test", styleCentered | styleThemed | styleAutoparent)

’

Error:

htmlCtrl = text(dlg, "Field:", "<html><body>\r\n<p id=\"Text\"
align=\"center\">Welcome to DOORS <i>ERS</i></p>\r\n</body></html>",
200, false)

htmlBtn = button(dlg, "Set HTML...", onSetHTML)

DBE getInnerTextBtn = button(dlg, "Get Inner Text...", onGetInnerText)
DBE getInnerHTMLBtn = button(dlg, "Get Inner HTML...", onGetInnerHTML)
DBE getAttributeBtn = button(dlg, "Get Attribute...", onGetAttribute)
DBE setInnerTextBtn = button(dlg, "Set Inner Text...", onSetInnerText)
DBE setInnerHTMLBtn = button(dlg, "Set Inner HTML...", onSetInnerHTML)
DBE setAttributeBtn = button(dlg, "Set Attribute...", onSetAttribute)
DBE frameCtrl = frame(dlg, "A Frame", 800, 500)

string strTabLabels[] = {"One","Two"}

DBE tab = tab(dlg, strTabLabels, 800, 500, onTabSelect)

DXL Reference Manual

"

109

110

htmlCtrl->"top"->"form"
htmlCtrl->"left"->"form"
htmlCtrl->"right"->"unattached"

htmlCtrl->"bottom"->"unattached"

htmlBtn->"top"->"spaced"->htmlCtrl
htmlBtn->"left"->"form"
htmlBtn->"right"->"unattached"

htmlBtn->"bottom"->"unattached"

getInnerTextBtn->"top"->"spaced"->htmlCtrl
getInnerTextBtn->"left"->"spaced"->htmlBtn
getInnerTextBtn->"right"->"unattached"

getInnerTextBtn->"bottom"->"unattached"

getInnerHTMLBtn->"top"->"spaced"->htmlCtrl
getInnerHTMLBtn->"left"->"spaced"->getInnerTextBtn
getInnerHTMLBtn->"right"->"unattached"

getInnerHTMLBtn->"bottom"->"unattached"

getAttributeBtn->"top"->"spaced"->htmlCtrl
getAttributeBtn->"left"->"spaced"->getInnerHTMLBtn
getAttributeBtn->"right"->"unattached"

getAttributeBtn->"bottom"->"unattached"

setInnerTextBtn->"top"->"spaced"->htmlBtn
setInnerTextBtn->"left"->"aligned"->getInnerTextBtn
setInnerTextBtn->"right"->"unattached"

setInnerTextBtn->"bottom"->"unattached"

setInnerHTMLBtn->"top"->"spaced"->htmlBtn
setInnerHTMLBtn->"left"->"spaced"->setInnerTextBtn
setInnerHTMLBtn->"right"->"unattached"

setInnerHTMLBtn->"bottom"->"unattached"

DXL Reference Manual

111

setAttributeBtn->"top"->"spaced"->htmlBtn
setAttributeBtn->"left"->"spaced"->setInnerHTMLBtn
setAttributeBtn->"right"->"unattached"

setAttributeBtn->"bottom"->"unattached"

frameCtrl->"top"->"spaced"->setInnerTextBtn
frameCtrl->"left"->"form"
frameCtrl->"right"->"form"

frameCtrl->"bottom"->"form"

tab->"top"->"inside"->frameCtrl
tab->"left"->"inside"->frameCtrl
tab->"right"->"inside"->frameCtrl

tab->"bottom"->"inside"->frameCtrl

html = htmlView(dlg, 800, 500, "http://news.bbc.co.uk", onHTMLBeforeNavigate,
onHTMLDocComplete, onHTMLError, onHTMLProgress)

html->"top"->"inside"->tab
html->"left"->"inside"->tab
html->"right"->"inside"->tab

html->"bottom"->"inside"->tab

realize (dlg)
show (d1lg)

HTML Edit Control

The section desctibes the DXL support for the HTML edit control added in Rational DOORS 9.0.

The control behaves in many ways like a rich text area for entering formatted text. It encapsulates its own formatting
toolbar enabling the user to apply styles and other formatting.

DXL Reference Manual

112

htmIEdit

Declaration

DBE htmlEdit (DB parentDB, string label, int width, int height)

Operation

Creates an HT'ML editor control inside parentDB.

htm|Buffer

Declaration
Buffer getBuffer (DBE editControl)
Operation

Returns the currently rendered HTML fragment shown in the control. The fragment includes everything inside the <body>
clement tag.

set(HTML edit)

Declaration
void set (DBE editControl, Buffer HTML)
Operation

Sets the HTML to be rendered by the edit control. The HTML fragment should include everything inside, but not
including, the <body> element tag.

Example

DB MyDB = create "hello"

DBE MyHtml = htmlEdit (MyDB, "HTML Editor", 400, 100)

void mycb (DB dlg) {

Buffer b = getBuffer MyHtml

string s = stringOf b

ack s

DXL Reference Manual

113

apply (MyDB, "GetHTML", mycb)
set (MyHtml, "Initial Text")

show MyDB

Miscellaneous

delete(regexp)

Declaration

void delete (Regexp)

Operation
New in Rational DOORS 9.0 this perm deletes the supplied regular expression and frees the memory used by it.

getURL

Declaration

string getURL (Database d)

string getURL (Module m)

string getURL (ModName modName)
string getURL (ModuleVersion modVer)
string getURL (Object o)

string getURL (Folder f)

string getURL (Project p)

string getURL (Item 1)

Operation
Returns the Rational DOORS URL of the given parameter.

backSlasher

Declaration
buffer backSlasher (Buffer b)

DXL Reference Manual

114

Operation

This function takes a buffer and converts all forward-slash characters (/) to back-slash characters (\), eliminates any
repeated back-slash characters, and removes any trailing back-slash characters.

Example

string s = "\\directory////file "
Buffer b = create

b =s

b = backSlasher (b)

print b ""

DXL Reference Manual

Chapter 11
Fundamental types and functions

This chapter describes the functions and operators that can be used on the fundamental types of the core language
underlying DXT.:

* Operations on all types
* Operations on type bool
e Operations on type char
* Operations on type int

* Operations on type real

* Operations on type string

Operations on all types

The concatenation operator and the functions print and null can be used with all fundamental types.

Concatenation (base types)

The space character is the concatenation operator, which is shown as <space> in the following syntax:
bool b <space> string s
real r <space> string s
char ¢ <space> string s
int 1 <space> string s

string sl <space> string s2

For type A space character

bool Concatenates string s onto the evaluation of b (true or false), and returns the resulting string.
real Concatenates string s onto real number r, and returns the resulting string.

char Concatenates the string s onto the character ¢ and returns the result as a string.

int Concatenates the string s onto the integer ¢ and returns the result as a string.

string Concatenates string s2 onto string s1 and returns the result as a string.

DXL Reference Manual

116

Concatenation must be used when printing derived types. An example of a derived typeis 0. ”Object text”, where o
is an object. If a string is not concatenated to the end of the print statement, a DXL error will occur, in this case.

Example
print "square root of 2 is " (sqgrt 2.0) "\n"
char nl = '"\n'

print "line one" nl "line two"
print (getenv "DOORSHOME") "/lib/dx1"

print o."Object text" ""

print (base types)

Declaration

void print (bool x)
void print (real r)
void print (char c¢)
void print (int 1)

void print (string s)

Operation
For type Prints
bool The string true in the DXL output window if x is t rue; otherwise prints false.
real The passed real number r in the DXL output window, using a precision of 6 digits after the radix
character.
char The character ¢ in the DXL output window.
int Integer 1 in the DXL output window, with a trailing newline.
string The string s in the DXL output window without a trailing newline.
Example
print (2.2 * 2.2) // prints 4.840000
print 'a'

print "Hello world\n"

null

The null function either returns the null value for the type, or tests whether a variable has the null value for its type.

DXL Reference Manual

Declaration
type null ()

bool null (type x)

Operation

The first form returns the following values depending on the value of type:

Type Return value

bool false

char character of ASCII code 0
int 0

real 0.000000

string a null string ("")

The second form returns true if x has a null value as follows:

Type Null value

bool falseornull

char null

int Oornull

real Any 0 value with any number of decimal places or null
string “W ornull

You can use the value null to assign a null value to any type, including type bool and char.

Example

string empty

null

print null empty // prints true

Operations on type bool

Just as C++ has introduced a separate type bool (for boolean), so has DXL.

See also “Concatenation (base types),” on page 115, the print function, and the null function.

DXL Reference Manual

117

118

Type bool constants

The following constants are declared:
const bool true

const bool on

const bool false

const bool off

The boolean value true is equivalent to on; the value false is equivalent to of £.

Note: For boolean values you cannot use 1 and 0.

Boolean operators

The operators &&, | |,and ! perform logical AND, OR, and NOT operations, as shown in the following syntax:
bool x && bool y

bool x || bool y

'bool x

These operators use lazy evaluation.

The && operator returns true only if x and y are both true; otherwise, it returns false. If xis false, it does not
evaluate y.

The | | operator returns true if x or yis true; otherwise, it returns false. If xis true, it does not evaluate y.

The ! operator returns the negation of x.

Type bool comparison

Type bool relational operators can be used as shown in the following syntax:

bool x == bool y

bool x != bool y

The == operator returns true only if x and y are equal; otherwise, it returns false.

The != operator returns true only if x and y are not equal; otherwise, it returns false.

Operations on type char

See also “Concatenation (base types),” on page 115, the print function, and the null function.

DXL Reference Manual

119

Character comparison

Character relational operators can be used as shown in the following syntax:
char chl == char ch2
char chl != char ch2
char chl < char ch2
char chl > char ch2
char chl <= char ch2
char chl >= char ch2

These operators teturn true if chl is equal, not equal, less than, greater than, less than or equal to, or greater than or
equal to ch2.

Character extraction from string

The index notation, [], can be used to extract a single character from a string, as shown in the following syntax:
string text[int n]

This returns the n™ character of string text, counting from 0.

Example

This example prints h in the DXL Interaction window’s output pane:

string s = "hello"

char ¢ = s[0]

print c

Character classes

The set of functions whose names start with 1s can be used to check whether a character belongs to a specific class.

Declaration

bool isalpha (char ch)
bool isupper (char ch)
bool islower (char ch)
bool isdigit (char ch)
bool isxdigit (char ch)
bool isalnum(char ch)

bool isspace(char ch)

DXL Reference Manual

120

bool ispunct (char ch)
bool isprint (char ch)
bool iscntrl (char ch)
bool isascii (char ch)

bool isgraph (char ch)

Operation

These functions return t rue if the character ch is in the named character class:

Class Description
alpha 'a' = 'z' 'A' - 'Z7"
upper ‘A - "7
lower 'a' = 'z'
digit 0" - '9"
xdigit 0" - '9' 'a' - 'f' '‘A' - 'F!
alnum 'a' = 'z' 'A' - 'z' '0' - '9'
space oAt "\n' "\m" "\j" "\k'
punct any character except <space> and alpha numeric
characters

print a printing character
cntrl any character code between 0 and 31, and code 127
ascii any character code between 0 and 127
graph any visible character

Example

print isalpha 'x' // prints true

print isalpha ' ' // prints false

charOf
Declaration

char charOf (int asciiCode)

Operation

Returns the character whose ASCII code is asciiCode.

DXL Reference Manual

Example

const char nl =

charOf 10

intOf (char)

Declaration

int (char ch)

Operation
Returns the ASCII code of character ch.

Example

print intOf

g

// prints 97

Operations on type int

A type int value in DXL has at least 32 bits.

See also “Concatenation (base types),” on page 115, the print function, and the null function.

Arithmetic operators (int)

Arithmetic operators can be used as shown in the following syntax:

int
int
int
int
int
int

int

~int x

-int x

X

X

X

X

X

X

X

+

int
int
int
int
int
int

int

y

NR R R KR K

These operators perform integer arithmetic operations for addition, subtraction, multiplication, division, remainder, bitwise

OR, bitwise AND, bitwise NOT, and negation.

DXL Reference Manual

121

122

Assignment (int)

Assignment operators can be used as shown in the following syntax:

int x = 1int y
int x += int y
int x -= int y
int x *= int y
int x /= int y
int x %= int y
int x |= int y

int x &= int y

These operators assign integer values to variables of type 1nt assignment. The last seven variations combine an arithmetic
operation with the assignment.

Example
int y = 20
y *=3

print y // print 60

print y // print 8

print y // print 2

Unary operators

Unary operators can be used to increment or decrement variables before or after their values are accessed, as shown in the
following syntax:

int x++
int x--
int ++x
int --x

The first two operators return the value of the variable before incrementing or decrementing a variable. The second two
return the value after incrementing or decrementing a variable.

Note: You can overload these operators.

DXL Reference Manual

Example

int i

= 40

print ++1i

print i++

print i

// prints 41
// prints 41
// prints 42

Minimum and maximum operators

Two operators can be used to obtain the minimum or maximum value from a pair of integers, as shown in the following

syntax:

int x <? int y

int x >? int y

These operators return the minimum or maximum of integers x and y.

Example
print (3 <? 2)
print (3 >? 2)

// prints 2
// prints 3

Integer comparison

Integer relational operators can be used as shown in the following syntax:

int
int
int
int
int

int

X

X

X

X

X

X

== int
'= int
< int
> int
<= int
>= int

Y

NN R OKR

Y

These operators return true if x is equal, not equal, less than, greater than, less than or equal to, or greater than or equal to

v.

Example

print

(2 = 3)

// prints true

isValidInt

Declaration

bool isValidInt (string value)

DXL Reference Manual

123

124

Operation
Returns true if value is a valid integer; otherwise, returns false. The value passed must not be just spaces, e.g.

If a null string is passed, a DXL run-time error occurs.

random(int)

Declaration

int random(int max)
Operation

Returns a random integer value x such that 0 <= x < max

Example

print random 100 // prints an integer in the range 0 to 99

Operations on type real

A type real value in DXL is like a type double in C, with a precision of 64 bits.

See also “Concatenation (base types),” on page 115, the print function, and the null function.

Type real pi

The only constant of type real thatis declared in DXL is pi:
const real pi

This supplies a constant value of 3.141593.

Arithmetic operators (real)

Arithmetic operators can be used as shown in the following syntax:
real x + real y

real x - real
real x * real
real x / real
real

real x

-real x

DXL Reference Manual

125

Operation

These operators petform arithmetic operations on type real variables for addition, subtraction, multiplication, division,
exponentiation, and negation.

Example
print (2.2 + 3.3) // prints 5.500000

Assignment (real)

Assignment operators can be used as shown in the following syntax:
real x = real y
real x += real y
real x -= real y
real x *= real y
real x /= real y

These operators perform type real assignment. The last four variations combine an arithmetic operation with the
assighment.

Example
real x = 1.1
print (x += 2.0) // prints 3.1

After the print statement, the variable x is assigned the value 3. 1.

Convert to real

The assignment operator = can be used to convert an integer to a real number, as shown in the following syntax:

real r = int 1

Operation

Converts 1 into a type real, assigns it to the type real variable r, and returns this value.
Example

real r = 5

print r // prints 5.000000

Type real comparison

Type real relational operators can be used as shown in the following syntax:

real x == real y

DXL Reference Manual

126

real x != real y
real x < real y
real x > real y
real x <= real y

real x >= real y

These operators return true if x is equal, not equal, less than, greater than, less than or equal to, or greater than or equal
to y.

Example
print (2.2 < 4.0) // prints true

intOf (real)

Declaration

int intOf (real r)

Operation

Rounds r of type real to the nearest integer.

Example
print intOf 3.2 // prints 3

realOf

Declaration
real realOf (int 1)

real realOf (string s)

Operation

Converts type int 1 ortype string s into atype real value, and returns it.
Example

print realOf 4 // prints 4.000000

real x = realOf "3.2"

print x // prints 3.200000

DXL Reference Manual

Ccos

Declaration

real cos(real angle)

Operation

Returns the cosine of angle in radians.
sin

Declaration

real sin(real angle)

Operation

Returns the sine of angle in radians.
tan

Declaration

real tan(real angle)

Operation

Returns the tangent of angle in radians.
exp

Declaration

real exp(real x)

Operation

Returns the natural exponent of type real x.
log

Declaration

real log(real x)

Operation

Returns the natural logarithm of type real x.

DXL Reference Manual

127

128

pow
Declaration
real pow(real x,
real y)
Operation
Returns type real x raised to the power y (same as x"y).
sqrt

Declaration

real sqgrt(real x)

Operation

Returns the squate root of x.

random(real)

Declaration

real random/()

Operation

Returns a random value x, such that 0 <=x < 1.

Operations on type string

A DXL type string can contain any number of characters.

See also “Concatenation (base types),” on page 115, the print function, and the null function.

String comparison

String relational operators can be used as shown in the following syntax:
string sl == string s2
string sl != string s2

string sl < string s2

DXL Reference Manual

129

string sl > string s2
string sl <= string s2
string sl >= string s2

These operators return true if s1 is equal, not equal, less than, greater than, less than or equal to, or greater than or equal
to s2. Case is significant.

Example

print ("aaaa" < "a") // prints "false"
print ("aaaa" > "a") // prints "true"
print ("aaaa" == "a") // prints "false"
print ("A" > "a") // prints "false"
print ("McDonald" < "Man") // prints "false"

Substring extraction from string

The index notation, [], can be used to extract a substring from a string, as shown in the following syntax:
string text[range]
Operation

Returns a substring of text as specified by range, which must be in the form int:int.

The range argument is specified as the indices of the first and last characters of the desired substring, counting from 0. If
the substring continues to the end of the string, the second index can be omitted.

Example

string str = "I am a string constant"

print str[0:3] // prints "I am"

print str[2:3] // prints "am"

print str[5:] // prints "a string constant"
cistrcmp

Declaration

int cistrcmp(string sI,
string s2)

Operation

Compares strings s1 and s2 without regard to their case, and returns:

0 if s1 == 52

DXL Reference Manual

130

1 if st > §2

-1 if s1 < 52

Example

print cistrcmp ("aAa", "AaA") // prints 0

print cistrcmp ("aRa","aA") // prints 1

print cistrcmp ("aAa", "aRaa") // prints -1
length

Declaration

int length(string str)
Operation

Returns the length of the string str.

Example
print length "123" // prints 3

lower, upper

Declaration
string lower (string str)

string upper (string str)

Operation

Converts and returns the contents of str into lower or upper case.
Example

string mixed = "aaaBBBBcccc"

print lower mixed // prints "aaabbbbcccc"

print upper mixed // prints "AAABBBBCCCC"

soundex

Declaration

string soundex (string str)

DXL Reference Manual

Operation

Returns the soundex code of the string st r. Initial non-alphabetic chatracters of str are ignored.
Soundex codes are identical for similar-sounding English words.

Example

Both these examples print R265 in the DXL Interaction window’s output pane.

print (soundex "requirements")

print (soundex "reekwirements")

backSlasher

Declaration
buffer backSlasher (Buffer b)

Operation

This function takes a buffer and converts all forward-slash characters (/) to back-slash characters (\), eliminates any
repeated back-slash characters, and removes any trailing back-slash characters.

Example

string s = "\\directory////file "
Buffer b = create

b =s

b = backSlasher (b)

print b ""

findPlainText

Declaration

bool findPlainText (string s, string sub, int &offset, int &length, bool
matchCase[, bool reverse])

Operation

Returns true if string s contains the substring sub.

Both s and sub are taken to be plain text string. Use findRichText to deal with strings containing RTF markup.
If matchCase is true, string s must contain string sub exactly with matching case; otherwise, any case matches.

The function returns additional information in offset and 1ength. The value of offset is the number of characters
in s to the start of the first match with string sub. The value of Iength contains the number of characters in the
matching string.

DXL Reference Manual

131

132

If reverse is specified and is true, then the search is started at the end of the string, and the returned values of offset
and Iength will reflect the last matching string in s.

Example
string s = “This shall be a requirement”
string sub = “shall”

int offset = null

int length = null

bool matchCase = true

bool reverse = true

if (findPlainText (s, sub, offset, length, matchCase, reverse)) {

print offset ™ : ™ length “™ \\prints “5 : 5”

unicodeString

Declaration

string unicodeString (RTF string str, bool convertAllSymbols, bool
returnAsPlainText)

Operation

Returns the value of the specified rich text string as RTF or plain text. If the attribute contains characters in Symbol font,
these characters are converted to the Unicode equivalents.

If convertAllSymbols is true, all symbol character are converted. If false, only Unicode characters that have a good
chance of being displayed are used. See the symbolToUnicode perm for a description of which characters are
converted.

The value is returned as plain text if returnAsPlainText is true. Otherwise the value is returned as RTF.

escape

Declaration

string escape(string str, char escapeChar, string escapeChars)

Operation

HEscapes all the characters in str which are in escapeChars, with the escapeChar character. This also escapes
escapeChar itself.

DXL Reference Manual

133

Example
escape ("hello world", '/', "1") returns "he/l/lo wor/1ld"
escape ("hello world #1", '#', "1h") returns "#he#l#lo wor#ld ##1"

stripPath

Declaration

string stripPath(string path, bool isEscaped)
Operation

Removes the path part from path, using forward slash as the path separator.

If isEscapediis true, the slash character can be used as a literal character rather than a path separator by preceding the
character with a backslash.

Example
stripPath ("abc/def/ghi", b) returns "ghi", where b is true or false.
stripPath ("abc/def\\/ghi", true) returns "def/ghi"

DXL Reference Manual

134

DXL Reference Manual

135

Chapter 12
General language facilities

This chapter introduces basic functions and structures defined by DXI.’s run-time environment, as follows:
¢ Files and streams

* Configuration file access

* Dates

e Skip lists

* Regular expressions

* Text buffers

e Arrays

Files and streams

This section desctribes DXL’s features for manipulating files. For information on creating a directory, see the mkdir
function.

The main data type introduced is the St ream, which uses C++ like overloadings of >> and << to read and write files.
Streams are not a fundamental type inherited from DXL’s C origins, so the type name Stream begins with an upper case
letter.

Standard streams

Declaration
Stream& cin
Streamé& cout

Streamé& cerr

Operation

Following C++’s naming scheme for UNIX standard streams, these variables are initialized by Rational DOORS to
standard input, output and error.

On UNIX platforms, you can use cin to read input that has been piped into Rational DOORS, and cout to pipe data out
from Rational DOORS. Similatly, you can send user defined error messages (or any other desired output) to standard error
using cerr.

DXL Reference Manual

136

Read from stream

The operator >> can be used to read strings or data from a configuration area stream, or fill a buffer, as shown in the
following syntax:

file >> string s
file >> char c¢
file >> real r

file >> int 1

file >> Buffer b

where:

fileisafile of type Stream

The first form reads a line of text from the configuration area stream file into string s, up to but not including any newline.

The next three forms read the data from the configuration area stream file, and return the result as a stream, to enable
chained reads. Real and integer constants are expected to be the last items on a line, while characters, including newlines, are
read one at a time up to and including the end of file.

The second form reads from the configuration area stream file into buffer b until it is full at its current size, or the end of
the file is reached. Returns the configuration area stream. This function can read multiple lines.

Example
char c
real r
int i
Stream input = read "data.dat"

input >> ¢ >> r >> i

Read line from stream

Two operators can be used to read a single line from a stream to a buffer, as shown in the following syntax:
file -> Buffer b

file >= Buffer b

where:

fileisafile of type Stream

Operation

The —> operator reads a single line from the stream f£11e, and copies it to the buffer, skipping any leading white space. If
the line is empty besides white space, the buffer is emptied. Returns the stream.

DXL Reference Manual

137

The >= operator reads a single line from the stream £11e, and copies it to the buffer in its entirety. If the line is empty, the
buffer is emptied. Returns the stream.

Write to stream

The operator << can be used to write strings, single characters or buffers to a stream, as shown in the following syntax:
file << string s

file << char c¢

file << Buffer b

where:

fileisafile of type Stream

Writes the string s, the character ¢, or the buffer b to the stream file. To write other data types to a stream, first convert
them to a string by concatenating the empty string or a newline.

Example

Stream out = write tempFileName
out << 1.4 "\n"

Stream alpha = write tempFileName

alpha << 'a' << 'b' << '¢!

canOpenFile

Declaration
bool canOpenFile (string pathname,

bool forWrite)

Operation

Returns t rue when the file pathname can be opened; otherwise, returns false. If forWriteis set to true, the file is
opened for write and the current contents of the file are cleared. If forWriteissetto false the file is opened read only
and the existing contents are unchanged.

read, write, append(open file)

Declaration
Stream read(string filename)
Stream write(string filename)

Stream append(string filename)

DXL Reference Manual

138

Operation

Opens a file £ilename for reading, wtiting or appending, and returns a stream. File I/O operations only succeed if the
user has permission to create or access the files specified.

To open a binary file, you must call the binary function after the read, write or append. The syntax is therefore:
read [binary] filename

write [binary] filename

append [binary] filename

You can use the Stat DXL functions to check whether the I/O functions in this section can succeed (see “uset, size,
mode,” on page 185).

Example

// ASCII file

Stream output = write tempFileName

// binary file

Stream image = read binary pictureFileName

close(stream)

Declaration

void close (Stream s)

Operation

Closes the stream s.

flush

Declaration

void flush (Stream s)

Operation

Flushes the output stteam s. Character I/O can be buffered; this command forces any such buffers to be cleared.

readFile

Declaration

string readFile(string filename)

Operation

Returns the contents of the file £ilename as a string.

DXL Reference Manual

139

Note: The Codepages function also has a readFile operator. For information about Codepages and readFile, see
“readFile,” on page 209.

goodFileName

Declaration

string goodFileName (string filename)

Operation

Returns a legitimate file name of the passed file, £ilename, with respect to any restrictions imposed by the current
platform. This will only apply to the filename up to the .’ character. The string after the .” is ignored.

This function does not support non-English Unicode characters.
Example

This example prints the file name Test results in the DXL output window:

print goodFileName "Test results"

tempFileName

Declaration

string tempFileName ()

Operation

Returns a string, which is a legal file name on the current platform, and is not the name of an existing file. On UNIX
platforms, returns a file name like /tmp/DOORSaaouef; on Windows platforms, returns a file name like
C:\TEMP\DP2. This file can be used for temporary storage by DXL programs.

currentDirectory

Declaration

string currentDirectory ()

Operation

Returns the path name of the current working directory.

copyFile

Declaration

string copyFile(string sourceFileName,
string destFileName)

DXL Reference Manual

140

Operation

Copies file sourceFileName to destFileName. If the operation succeeds, returns null; otherwise, returns an

error message.

Example
copyFile ("filel", "file2")

deleteFile

Declaration

string deleteFile(string filename)

Operation

Deletes the file named filename. If the operation succeeds, returns null; otherwise, returns an error message.

renameFile

Declaration

string renameFile(string old, string new)

Operation

Renames the file called 01d to new. If the operation succeeds, returns null; if it fails, returns an error message.

end(stream)

Declaration
bool end(Stream s)

Operation

Returns true if the stream has no more characters pending. The test should be made after a read, but before the read

data is used:

Example

while (true) {
input >> str // read a line at a time; var set up
if (end input) break // test after read but before

print str "\n" // variable str is used

DXL Reference Manual

141

format

Declaration

void format (Stream s, string text, int width)

Operation

Outputs string text to Stream s, formatting each word of the text with a ragged right margin in a column of width
characters. If a word is too long for the specified column, it is continued on the next line.

Example

Stream out = write tempFileName

format (out, "DXL Reference Manual", 5)
close out

This generates the following in the temporary file:

DXL

Refer

ence

Manua

1

for file in directory

Syntax

for s in directory "pathname" do {

}

where:
pathname is the path of the directory
s is a string variable
Operation

Sets the string s to be each successive file name found in the directory pathname.

Example
This example prints a list of the files in ditectory C: \:
string x = "c:\\"

string file

DXL Reference Manual

142

for file in directory x do {

print file "\n"

Files and streams example program

This example creates a temporary file, writes some data to it, saves it, tenames it, reads from the new file, and then deletes it:

// file (Stream) DXL example

/*
example file I/0 program

*/

string filename = tempFileName // get a scratch file

print "Writing to " filename "\n"

Stream out = write filename

out << 'x' "» // write a char (via a string)

out << 1.001 "\n" // a real (must be last thing on line)
out << 42 "\n" // an int (must be last thing on line)

out << "hello world\na second line\n"
// a string

close out // write a file to read back in again
string oldName = filename
filename = tempFileName // get a new file name

renameFile (oldName, filename) // move the file we wrote earlier

print "Reading from " filename "\n"

Stream input = read filename

char ¢ // declare some variable
real r

int 1

input >> c

input >> r

input >> i

print ¢ ™ " r " " i "\n" // check data type read/writes
string str // do rest line by line

while (true) {
input >> str // read a line at a time

DXL Reference Manual

143

if (end of input) break
print str "\n" // str does not include the newline

}
print readFile filename // read the whole lot into a string
close input

deleteFile filename // delete the file

Configuration file access

This section describes the DXL features for manipulating configuration files. The data types used are ConfType and
ConfStream. Many of these functions have a parameter ConfType area. The arguments that can be passed as
ConfType area are as follows:

e confUser

e confSysUser
* confSystem
¢ confTemp

The confUser argument means the file is situated in an area specific to the current Rational DOORS user, or to the
current system user if a project is not open.

The confSysUser argument means the file is situated in the configuration area for system users. This argument remains
constant regardless of whether the user is logged into the project. For example, the Rational DOORS Tip Wizard uses a
confSysUser file to store whether a user has opted to show Tips on startup.

The confSystem argument means the file is situated in a shared area accessible by all users.
The confTemp argument is similar to confSystem, but is generally used for storing temporary files.

If the function does not supply an area argument, confUser is used.

Read from stream

The operator >> can be used to read strings or data from a configuration area stream, or fill a buffer, as shown in the
following syntax:

file >> string s

file >> Buffer b

where:

fileisafile of type ConfStream

The first form reads a line of text from the configuration area stream f1i1e into string s, up to but not including any

newline.

The second form reads from the configuration area stream £1 1e into buffer b until it is full at its current size, or the end of
the file is reached. Returns the configuration area stream. This function can read multiple lines.

DXL Reference Manual

144

Read line from stream

Two operators can be used to read a single line from a configuration stream to a buffer, as shown in the following syntax:
file -> Buffer b

file >= Buffer b

where:

fileisafile of type ConfStream

Operation

The —> operator reads a single line from the configuration area stream £1le, and copies it to the buffer, skipping any
leading white space. If the line is empty besides white space, the buffer is emptied. Returns the stream.

The >= operator reads a single line from the configuration area stream £1i le, and copies it to the buffer in its entirety. If
the line is empty, the buffer is emptied. Returns the stream.

Write to stream

The operator << can be used to write strings, single characters or buffers to a stream, as shown in the following syntax:
file << string s

file << char c¢

file << Buffer b

where:

fileisafile of type ConfStream

Writes the string s, the character ¢, or the buffer b to the configuration area stream f£1Ie. To write other data types to a
configuration area stream, first convert them to a string by concatenating the empty string or a newline.

Example

ConfStream out = write tempFileName
out << 1.4 "\n"

ConfStream alpha = write tempFileName

alpha << 'a' << 'b' << '¢!

confMkdir

Declaration

void confMkdir (string dirName
[,ConfType areal)

DXL Reference Manual

145

Operation

Creates the directoty, dirName, in either the default ot the specified configuration area, area.

confDeleteDirectory

Declaration

string confDeleteDirectory(string pathname, ConfType conf)

Operation

Deletes the named directory in the specified ConfType atea (confSystem or confUser). On success it returns null;

on failure it returns an error string.

confRead

Declaration

ConfStream confRead(string fileName
[,ConfType areal)

Operation
Opens the specified file for reading, and returns the file handle. The file can be in either the default or the specified

configuration area.

Detects the encoding of conf files by checking for the presence of a UTF-8 Byte Order Marker (BOM) at the start of the
file. If it finds one, it assumes that the file is encoded in UTF-8. Otherwise, it assumes that the file is encoded according to
the legacy codepage for the database. In either case, any values subsequently read from the file using the ConfStream >>
operator or others are converted to Unicode, so the encoding of the file should not affect the functionality of any DXL
scripts that use this perm.

confWrite

Declaration

ConfStream confWrite(string fileName
[,ConfType areal)

Operation

Opens the specified file for writing, and returns the file handle. The file can be in either the default or the specified
configuration area.

Any conf files created by this perm are encoded in UTF-8, enabling them to contain any Unicode strings.

DXL Reference Manual

146

confAppend

Declaration

ConfStream confAppend (string fileName
[,ConfType areal)

Operation
Opens the specified file for appending, and returns the file handle. The file can be in either the default or the specified

configuration area.

This perm converts any non-UTF-8 files to UTF-8 encoding before opening them for append. This enables any Unicode
strings to be written to the file using the ConfStream << write operators.

confRenameFile

Declaration

string confRenameFile(string old,
string new
[,ConfType areal)

Operation
Renames the file 01d to new in either the default or the specified configuration area.

Returns an error message string if the operation fails.

confCopyFile

Declaration
string confCopyFile(string source,
string dest,
ConfType area)
Operation

Copies source to dest in the specified configuration area. If the operation fails, it returns an error message.

confDeleteFile

Declaration

string confDeleteFile(string fileName
[,ConfType areal

DXL Reference Manual

147

Operation

Deletes the specified file in either the default or the specified configuration area. If the operation fails, it returns an error

message.

confFileExists

Declaration

bool confFileExists (string fileName
[,ConfType areal)

Operation

Returns true if the specified file exists in either the default or the specified configuration area; otherwise, returns false.

close(configuration area stream)

Declaration

void close (ConfStream s)

Operation

Closes the configuration atea stream s.

end(configuration area stream)

Declaration
bool end(ConfStream s)

Operation

Returns true if the stream has no more characters pending. The test should be made after a read, but before the read

data is used:

Example

while (true) {
input >> str // read a line at a time; var set up
if (end input) break // test after read but before
print str "\n" // variable str is used

DXL Reference Manual

148

for file in configuration area

Syntax

for s in confDirectory("dirname"[,areal) do {

}

where:
dirname is the name of the directory in area, or if area is omitted, in
confUser
area is a constant of type ConfType: confUser,
confSysUser, confSystem, confTemp, or
confProjUser
s is a string variable
Operation

Sets the string s to be each successive file name found in the directory pathname.

Example
This example prints a list of the files in ditectory test in confUser:
string file

for file in confDirectory("test") do {
print file "\n"

confUploadFile(source, dest [, conftype])

Declaration

string confUploadFile(string source, string dest [, conftypel)

Operation

Uploads a file from the location on the client machine specified by source, to the file in the system conf area on the
database server, specified by dest. It returns null on success. If the dest string contains double-petiods " . ." ot specifies
an invalid directory, then the perm reports an error and returns null. Otherwise, if the upload fails, the perm returns an error
message.

The optional 3rd argument specifies the config area where the file should be sent. This defaults to the current user’s config
area (confUser). Files to be accessible to all users should be uploaded to the system config area, by specifying this argument
as “confSystem”.

Example

string message = confUploadFile ("C:\\temp\\myprog.exe", "myprog", confSystem)

DXL Reference Manual

149

if (!'null message)

{

warningBox (message)

confDownloadFile(source, dest [, conftype])

Declaration

string confDownloadFile (string source, string dest [, conftypel)

Operation

Downloads a file from the location in the conf area on the database server, specified by dest, to the location on the client
machine specified by source. It returns null on success. If the source string contains double-periods “. .” then the perm
reports an error and returns null. Otherwise, if the download fails, the perm returns an error message.

The optional 3rd argument specifies the config area from which the file should be copied. This defaults to the current uset’s
config area (confUser).

Example

string message = confDownloadFile ("myprog","C:\\temp\\myprog2.exe", confSystem)
if (!'null message)

{

warningBox (message)

Dates

This section describes DXLs features for manipulating dates.
Dates are not a fundamental type inherited from DXL’s C origins, so the type name Date begins with an upper case letter.

DXL Date data limits are from 1 Jan 1970, to 31 Dec 2102.

Note: The date values always refer to your system’s current time zone.

Concatenation (dates)

The space character is the concatenation operator, which is shown as <space> in the following syntax:

Date d <space> string s

DXL Reference Manual

150

Concatenates string s onto date d and returns the result as a string. It uses the long format date, or, if any operations
dealing in seconds have occurred, the short format date with time added.

Example
This example prints <01 January 1999>:
Date d = "1 Jan 99"

print nengnsn

Assignment (date)

The assignment operator = can be used as shown in the following syntax:
Date d = string datestr

Converts the string datestr into a date, assigns it to d, and returns it as a result. Issues an error message if datestris
not in a valid date format. Ordinal numbers, for example 4th, are not recognized. Apart from that limitation, all date
formats are valid, for example:

Yyyy, dd mmm
dd/mm/yy
mm/dd/yy

Time can be appended to a dates using the format hh:mm:ss. ss, provided the date is in the format dd/mm/yy or
mm/dd/yy.

Example

This example prints 04 October 1961:
Date dl = "4 Oct 1961"

print dl

Date comparison

Date relational operators can be used as shown in the following syntax:
Date dl == Date d2
Date dl1 != Date dZ2
Date dlI < Date d2
Date dl > Date d2
Date dl <= Date dZ2
Date dlI >= Date d2

These operators return true if d1 is equal, not equal, less than, greater than, less than or equal to, greater than or equal to
dz.

DXL Reference Manual

151

Example

This example prints false in the DXL Interaction window’s output pane:
Date dl = "4 Oct 1961"

Date d2 = "10 Nov 1972"

print (dl > d2)

print(date)

Declaration
void print (Date d)

Operation

Prints the date d in the DXL output window in long format, or, if any operations dealing in seconds have occurred, the
short format date with time added.

Example
This example prints 04 October 1961:
Date dl = "4 Oct 1961"
print dl
today
Declaration

Date today()

Operation

Returns today’s date. The value includes the exact time, but it is not printed using:
print today

The function call:

intOf today

returns the integer number of seconds since 1 Jan 1970, 00:00:00 GMT.
Example

This example prints the current date and time:

print dateOf intOf today

Note: Concatenating strings to the end of this statement may give unexpected results.

DXL Reference Manual

152

session

Declaration

Date session()

Operation

Returns the date on which the current Rational DOORS session began. The value includes the exact time in the same way
as the today function.

Example
This example prints the date the current Rational DOORS session started:

print session

intOf(date)

Declaration
int intOf (Date d)

Operation

Returns an integer corresponding to the number of seconds that have elapsed between the given date and 1 Jan 1970,
00:00:00 GMT.

When a Date data type is converted for dates on or after 1 Jan 2037, or before 1 Jan 1970, this function returns a result of
-1.

Example
print intOf today

dateOf

Declaration

Date dateOf (int secs)

Operation

Returns the date and time that is calculated as secs seconds since 1 Jan 1970, 00:00:00 GMT.
Example

int minute = 60

int hour = 60 * minute

int day = 24 * hour

int year = 365 * day

DXL Reference Manual

int leapYear = 366 * day

print dateOf ((year * 2) + leapYear)

This generates the following in the DXL Interaction window’s output pane:

01/01/73 00:00:00

This is three years after 1 Jan 1970, 00:00:00 GMT, taking into account that 1972 was a leap year.

stringOf

Declaration
string stringOf (Date d[, Locale 1][, string s])

Operation

This returns the string representation of the date value using the specified locale and format. If no locale is specified, the
cutrent user locale is used. If no format string or a null format string is specified, then if the date value includes time
(hours:minutes:seconds), the default short date format for the locale will be used. Otherwise, a long date format will be
used. The default short date format will be either that specified by the user using setDateFormat (Locale), or, if no
default short date format has been set by the user for the locale, the system default format.

date

Declaration
Date date(string s[, Locale I1][,string s])

Operation

This returns the date value represented by the supplied string, interpreted according to the specified locale and format. The
default locale is the current user locale. If no format string is supplied, the input string is parsed using first the user’s default
short date format (if one has been specified for the locale), and then all the supported formats for the locale.

for string in shortDateFormats

Declaration

for string in shortDateFormats ([Locale 11])

Operation

This iterator returns the short date formats supported for the specified locale. If no locale is specified, it returns the short
date formats supported for the current user locale.

The first format returned is the default short date format for the locale.

DXL Reference Manual

153

154

for string in longDateFormats

Declaration

for string in longDateFormats ([Locale 117)

Operation

This iterator returns the long date formats supported for the specified locale. If no locale is specified, it returns the long date

formats supported for the cutrent user locale.

The first format returned is the default long date format for the locale.

includesTime

Declaration

bool includesTime (Date d)

Operation

This returns t rue if the specified date value includes time information as well as date.

dateOnly

Declaration
Date dateOnly (Date d)

Operation

Returns a copy of the supplied date value, without any included time-of-day information (it returns a date-only value).

dateAndTime

Declaration
Date dateAndTime (Date d)

Operation

Returns a copy of the supplied date value including time-of-day data.

Example

print today ()

prints 6 June 2010

print dateAndTime (today)
ptints 6/6/2010 13:42:34

DXL Reference Manual

155

Example

The following example uses the new locale specific date format perms.

// dates.dxl - dates and formats example
//*‘k***‘k*‘k************‘k*‘k*‘k***‘k**
void testFormat (Date dateValue, Locale loc, string format)

// DESCRIPTION: Checks that the stringOf and dateOf perms are true

// inverses for the specified format.

{

print " format " format ": " stringOf (datevalue, loc, format) "\n"

} // testFormat
//**
vold testDate (Date dateValue, Locale loc)
// Tests stringOf and dateOf using default formats, and all supported formats.
{

// Test default format

string stringForm = stringOf (dateValue, loc)

print "Default format: " stringForm "\n"

// Test all supported formats
string format
print "Short formats:\n"
for format in shortDateFormats (loc) do
{
testFormat (dateValue, loc, format)
}
print "Long formats:\n"
for format in longDateFormats (loc) do
{

testFormat (dateValue, loc, format)

// Test abbreviations.

print "Abbreviated names: " stringOf (datevValue, loc, "ddd, d MMM yy") "\n"

DXL Reference Manual

156

// Test all full names.
print "Full names: " stringOf (datevalue, loc, "dddd, d MMMM yyyy") "\n"

} // testDate

Locale loc = userLocale

print "\nLOCALE: " (name loc) "\n"
print "\nDATE ONLY:\n"

testDate (today, loc)

print "\nDATE AND TIME:\n"

testDate (dateAndTime (today), loc)

Skip lists

This section desctribes DXL’s features for manipulating skip lists.

Skip lists are an efficient dictionary like data structure. Since DXL does not support a C like struct feature, many DXL
programs use skip lists as the building blocks for creating complex data structures.

Because DXL provides no garbage collection, it is important to delete skip lists that are no longer required, thereby freeing

allocated memoty.

Skip lists are not a fundamental type inherited from DXL’s C origins, so the type name Skip begins with an upper case
letter.

create, createString(skip list)

Declaration
Skip create()

Skip createString/()

Operation
Creates a new empty skip list and returns it.

It is very important, and it is the programmer’s responsibility to ensure that data and keys are consistently used when storing
and retrieving from a skip list. For example, you can cause program failure by inserting some data into a skip list as an
integer, then retrieving the data into a string variable and attempting to print it.

The keys used with the skip list can be of any type. However, comparison of keys is based on the address of the key, not its
contents. This is fine for elements that are always represented by a unique pointer, for example, objects, modules, or skip
lists, but care is needed with strings. This is because a string may not have a unique address, depending on whether it is
literal or a computed string stored in a variable.

DXL Reference Manual

157

There are two ways of avoiding this problem. The first is to use the createString form of the function for a skip list
with a string key. The alternative is to ensure that all literal strings used as keys are concatenated with the empty string.

Example
Skip strKeys = create
put (strKeys, "literal" "", 1000)

delete(skip list)

Declaration
void delete (Skip s)
Operation

Deletes all of skip list s. Variables that have been given as keys or data are not affected. This operation does not set the skip
list to null. If the user checks the list for null, this will produce a DXL run-time error. The user should set the skip list to null
after deletion.

delete(entry)

Declaration

bool delete(Skip s,
type key)

Operation

Deletes an entry in skip list s according to the passed key, which can be of any type. Variables that have been given as keys
or data are not affected. Returns false if the key does not exist.

Example

if (delete (numberCache, 1)) // delete absno 1
ack "delete succeeded"

find(entry)

Declaration

bool find(Skip s,
typel key
[,type2 &datal)

Operation

Returns true if the passed key, of typel, has an entry in skip list s. The optional third argument sets the entry found to
be data of type2. Both typel and type?2 can be any type.

DXL Reference Manual

158

Example

if (find(numberCache, 1, o)) {
string h = o0."Object Heading"
ack h

key

The key function is used only within the skip list for loop, as shown in the following syntax:

(type key(Skip s))

Operation

Returns the key corresponding to the current element. The return value can be of any type, so a cast must precede the use of
key.

Example

Object o

for o in numberCache do {
// must cast the key command.
int i = (int key numberCache)
print i

put

Declaration

bool put (Skip s,
typel key,
type2 data)

Operation

Returns true if the passed key and data are successfully inserted into the skip list s. Duplicate entries are not allowed,
so the function returns false if an entry with the same key already exists. For this reason, an entry at an existing key
must first be deleted before its data can be changed.

Example

Skip s = create
put(s,1,20)

print put(s, 1, 30)
// prints 'false'
delete(s, 1)

print put(s, 1, 30)

DXL Reference Manual

159

// prints 'true', s(l) is now 30

for data element in skip list

Syntax

for dataElement in skiplist do {

}
where:
dataElement is a variable of any type

skiplist is a variable of type Skip

Operation

Sets entry to be each successive type data element of 1ist.

Example
Object o

for o in numberCache do {
string h = o0."Object Heading"
print h "\n"

Skip lists example program

In this example a skip list is used to store a mapping from absolute numbers to the corresponding Rational DOORS object:
// skip list example
/*
simple skip list example: make a mapping
from absolute numbers to objects, allowing
fast lookup
*/
Skip numberCache = create // builds the skip list
Object o

int n=20 // count objects

for o in current Module do {
// cycle through all objects

int absno = o."Absolute Number"
// get the number

DXL Reference Manual

160

put (numberCache, absno, o)
// number is key, object is data

n++
}// for
// we now have a quick way of going from absolute numbers to objects:
if (n > 0) {

int 1

for i in 1:20 do {

int absno = 1 + random n
// choose an absno at random

if (find (numberCache, absno, o)) {
// can we find it?
string heading = o."Object Heading"

print "#" absno " has
heading \"" heading "\"\n"

y// if
}// for
y// if

Regular expressions

This section describes DXL’s features for using regular expressions.

Regular expressions are a mechanism for detecting patterns in text. They have many applications, including searching and
simple parsing.

Regular expressions are not a fundamental type inherited from DXI’s C origins, so the type name Regexp begins with an
upper case letter.

The following symbols can be used in Regexp expressions:

Meaning Example Matches
* ZEro Of more Occurrences ax any number of a charactets, or none
+ one or more occurrences x+ one or more X characters
any single character except X any number of any characters (any
new line string)
\ escape (literal text char) \. literally a . (dot) character

DXL Reference Manual

(Continued)

A

start of the string (if at start

of Regexp)

end of the string (if at end of

Regexp)

Groupings

character range (letters or

digits)

Alternative

“"The.*

end\\.$

(ref) +
(bind) *

[sSThall.

*\\. S

[~abc]
[a=-zA-7]
[0-9]

(dat |doc)

any string starting with The or
starting with The after any new
line(see also | | below)

any string ending with end.

at least one ref string then any
number of bind strings

any string containing shall or Shall
and ending in a literal dot (any
requirement sentence)

any character except a, b, or ¢
any alphabetic character

any digit

cither the string dat or the string doc

Note:

The regular expression escape character must itself be escaped in a DXL string. For example, to have the regular

expression \ ., you must have \\ . in the DXL string.

Many of the functions for regular expressions use the data type Regexp.

Application of regular expressions

The space character is an operator that applies a regular expression to a string or buffer; it is shown as <space> in the
following syntax:

Regexp reg <space> string text

Regexp reg <space> Buffer b

Operation

Returns true if there is a match.

Example

Regexp line = regexp?

while

(line txtl)

{

nmoxn

DXL Reference Manual

161

162

match

The match function returns a range for a match of a regular expression within a string or buffer, as shown in the following
syntax:

Regexp r = regexp "x(optionsl)y(optionsZ2)..."
{string|Buffer} str = "string"

str[match n]

where:
r str are variables
Xy are literal characters in a regular expression
optionsl are regular expression matching options
options2
string is a string or buffer
n is an integer

Operation

When n=0, teturns the range of string. When n=1, returns the range of the match for optionsl;when n=2, returns
the match for options2, and so on. The value for n is restricted to the range 0-9.

Example

This example detects and decomposes URLs:

Regexp URL = regexp2 " (HTTP|http|ftp|FTP|file|FILE) :// ([~ \\),:>\"]1*)"
string txt3 = "The ABC URL is http://www.abc.com; it may be..."

if (URL txt3) {

print txt3[match 0] "\n" // whole match
print txt3[match 1] "\n" // first section in ()
print txt3[match 2] "\n" // second section in ()
}
matches
Declaration

bool matches (string reg,
string text)

DXL Reference Manual

163

Operation

Returns true if text matches reg. For repeated use, declaring and building a regular expression is more efficient.

Example
string txt = "xxxxyesuuuu"

if (matches (" (yes|no)", txt)) print txt[match 0]

regexp

Declaration
Regexp regexp (string req)
Operation

Returns a new regular expression, specified by string reg. For legacy support only, should not be used in new code.
Replaced by regexp2().

Example
// matches any line except newline

Regexp line = regexp2 ".*"

start, end(of match)

Declaration
int start(int n)

int end(int n)

Operation

Return the position of the first and last characters of the nth match from a call to ma tch. The value for n is restricted to
the range 0-9.

Example

int firstNameLen = end 1

delete(regexp)

Declaration
void delete (Regexp)

Operation

This perm deletes the supplied regular expression and frees the memory used by it.

DXL Reference Manual

164

regexp2

Declaration

Regexp regexp? (string expression)

Operation

Creates a regular expression. Its behavior will not be changed to match the legacy behavior of regexp () . Should be used
in all new regular expression code.

Regular expressions example program

// regular expression DXL example

/*
examples of regular expression DXL

*/

Regexp line = regexp2 ".*"

// matches any character except newline

string txtl = "line 1\nline 2\nline 3\n"
// 3 line string

while (!'null txtl && line txtl) {
print txtl[match 0] "\n"
// match 0 is whole of match

txtl = txtl[end 0 + 2:] // move past newline
}

// The following regular expression detects and decomposes URLs

Regexp URL = regexp2 " (HTTP|http|ftp|FTP|file|FILE):// ([~ \\),;>\"]1*)"

string txt3 = "The ABC URL is http://www.abcinc.com, and may be..."
if (URL txt3) {

print txt3[match 0] "\n" // whole match

print txt3[match 1] "\n" // first bracketed section

print txt3[match 2] "\n" // second.

print start 1 // position 15 in txt3 (from O0)

print end 1 // 18

print start 2 // 22

print end 2 // 34

DXL Reference Manual

165

Text buffers

The following functions enable the manipulation of DXL buffers. Buffers are a speed and memory efficient way of
manipulating text within DXL applications. Their use is particularly encouraged in parsers and importers.

You should explicitly delete buffers with delete as soon as they are no longer needed in a script.

Buffers are not a fundamental type inherited from DXI.’s C origins, so the type name Buf fer begins with an upper case
letter.

Because DXL provides no garbage collection, it is important to delete buffers that are no longer required, thereby freeing
allocated memory.

Assignment (buffer)

The assignment operator = can be used as shown in the following syntax:
Buffer b = string s
or

Buffer b = h.oldvalue
Operation

The first form sets the contents of buffer b to that of the string s. You can use a range in the assignment.

The second form sets the contents of the buf fer to the history property oldValue. The buffer should be deleted after

use.

Note: If you want to assign a buffer to a buffer, you must use the form Buf fer b=stringOf (a), otherwise, the
address of a is given to b instead of its value.

Append operator

The append operator += can be used as shown in the following syntax:
Buffer b += string s
Buffer b += char c¢

Buffer b += Buffer b

Operation
Appends the string, character, or buffer to the buffer b.

Example
This example prints oneltwox in the DXL Interaction window’s output pane:
Buffer bufl = create

Buffer buf2 = create

DXL Reference Manual

166

bufl = "one"
buf2 = "two"
bufl += "1"
bufl += buf2
bufl += 'x'

Concatenation (buffers)

The space character is the concatenation operator, which is shown as <space> in the following syntax:
Buffer b <space> string s

Concatenates string s onto the contents of buffer b and returns the result as a string. You can use a range in the
concatenation.

Example
Buffer b

= create

b = "aaa"

print b "zzz" // prints "aaazzz"

Buffer comparison

String relational operators can be used as shown in the following syntax:

Buffer bl == Buffer b2
Buffer bl != Buffer b2
Buffer bl < Buffer b2
Buffer bl > Buffer b2
Buffer bl <= Buffer b2
Buffer bl >= Buffer b2

These operators return true if bl is equal, not equal, less than, greater than, less than or equal to, or greater than or equal
to b2. Case is significant.

Example

Buffer bl = create

Buffer b2 = create

bl = "aaa"

b2 = "aza"

print (bl==b2) "™ " (bl!=b2) " " (blb2) " "
print (blb2) "™ " (bl<=b2) " " (bl>=b2) "\n"

DXL Reference Manual

167

// prints "false true true false true false"

Read and write operators

The >> operator can be used to read a stream into a buffer and return the stream (see “Read from stream,” on page 130).
The << operator can be used to write a buffer to a stream and return the stream (see “Read line from stream,” on page 136).

The -> and >= operators can be used to read a single line from a file to a buffer, (see “Write to stream,” on page 137).

Character extraction from buffer

The index notation, [], can be used to extract a single character from a buffer, as shown in the following syntax:

Buffer b[int n]

This returns the n'™ character of buffer b, counting from 0.
Example

This example prints a in the DXL Interaction window’s output pane:
Buffer b = "abc"

char ¢ = b[0]

print c

Substring extraction from buffer

The index notation, [], can be used to extract a substring from a buffer, as shown in the following syntax:
Buffer b[range]

Operation

Returns a range of b as specified by range, which must be in the form int :int.

The range argument is specified as the indices of the first and last characters of the desired range, counting from 0. If the
range continues to the end of the buffer, the second index can be omitted. This function returns a buffer or string
depending on the type assigned.

Example

Buffer buf = create

buf = "abcdefg"

string s = buf[2:3]

print s // prints cd
Buffer b = buf[4:5]

print b // prints ef

DXL Reference Manual

168

combine

Declaration

void combine (Buffer bl,
Buffer b2,
int start
[,int finish])
Operation

Concatenates a substring of b2 onto the contents of b1. The substring is from start to finish,orif finishis
omitted, from start to the end of the buffer. This function provides a performance advantage over the assignment to
buffer using the range option.

Example

Buffer bl = create, b2 = create
bl = "zzz"

b2 = "abcdef"

combine (bl, b2, 3, 4)

print stringOf bl // prints "zzzde"

contains

Declaration

int contains (Buffer b,
char ch
[,int offset])

int contains (Buffer b,
string word,
int offset)

Operation

The first form returns the index at which the character ch appears in buffer b, starting from 0. If present, the value of
offset controls where the search starts. For example, if offset is 1, the search starts from 2. If offset is not
present, the search starts from 0. If ch does not appear after offset, the function returns —1.

The second form returns the index at which string word appears in the buffer, starting from 0, provided the string is
preceded by a non-alphanumeric character. The value of the mandatory of fset argument controls where the search
starts. If word does not appear after offset, the function returns —1.

DXL Reference Manual

169

getDOSstring

Declaration
Buffer getDOSstring (Buffer b)

Operation

Returns a copy of the supplied Buffer, with a cartiage-return character inserted before any newline character that is not

already preceded by a carriage return.

create(buffer)

Declaration

Buffer create([int initSizel)

Operation

Creates a buffer. A buffer has no intrinsic limit on its size; when a buffer becomes full it extends itself, if memory permits.
The atgument 1nitSize specifies the initial size of the buffer. If no initial size argument is passed, this function creates a
buffer that uses a default initial size of 255.

delete(buffer)

Declaration
void delete (Buffer &b)

Operation

Deletes the buffer b, and sets the variable b to null.

firstNonSpace

Declaration
int firstNonSpace (Buffer b)
Operation

Returns the index of the first non-space character in buffer b, or —1 if there is none.

DXL Reference Manual

170‘

keyword(buffer)

Declaration
int keyword(Buffer b,

string word,
int offset)
Operation

Returns the index at which string word appears in buffer b, starting from character of fset, provided that the string is
neither preceded nor followed by a non-alphanumeric character. If word does not appear, the function returns —1.

This function is used to accelerate parsing of programming languages.

length(buffer get)

Declaration
int length (Buffer b)

Operation

Returns the length of the buffer.

length(buffer set)
Declaration
void length (Buffer b,
int Ien)
Operation

Sets the length of a buffer. This is normally used for truncating buffers, but can also be used to lengthen them.
The DXL program is responsible for the content of the buffer.

Example

Buffer buf = create

buf = "abcd"

length (buf, 2)

print "<" (stringOf buf) ">" // prints "ab"

DXL Reference Manual

171

set(char in buffer)

Declaration
void set (Buffer b,
int n,
char ch)
Operation
Sets the character at position n of buffer b to character ch.
Example
if (name[n] == '.') set(name, n, ';")
setempty
Declaration

void setempty (Buffer b)

Operation

Empties buffer b, but does not reclaim any space.

setupper, setlower

Declaration
void setupper (Buffer b)

void setlower (Buffer b)

Operation

These functions convert the case of buffer b to upper or lower case.

stringOf(buffer)

Declaration
string stringOf (Buffer b)

Operation

Returns the contents of buffer b as a string.

Example

Buffer b = create

DXL Reference Manual

172

b = "aaaa"

print stringOf b // prints "aaaa"

Buffers and regular expressions

Regular expressions can be applied to buffers in the same way as strings (see “Application of regular expressions,” on page
161). The regular expression functions start, end (of match), and match can also be used with buffers.

Example
Buffer buf = create
buf = "aaaabbccccc"
Regexp re = regexp2 "a*"
re buf // apply regular expression
print buf[match 0] // prints "aaaa"
search
Declaration

bool search (Regexp re,
Buffer b,
int start
[,int finish])

Operation

Searches part of b using re. The search starts at start and continues until £inish, orif finish is omitted, from
start to the end of the buffer.

This function provides a performance advantage over the concatenation of regular expression to buffer with the range
option.
Note that the match, end and start regular expression functions can be used to return offsets relative to start, not

the start of the buffer.

It is possible when using this perm along with a complex regular expression, and a very large Buffer, that valid code will
produce a run-time error detailing an “incorrect regular expression”.

Text buffers example program

// buffer DXL example
/*

example use of DXL buffers - place a border
around a multi-line piece of text, e.g.:

| the gquick brown |

DXL Reference Manual

*/

fox jumped over |
the lazy dog |

Buffer process (Buffer source) {

Regexp line = regexp2 ".*"

int from = 0

int max = 0
Buffer boxed = create, horiz = create
while (search(line, source, from)) {

// takes a line at a time from source

int offset = end 0
// end of the match within source

string match = source[from:from+offset]

from += offset + 2
// move 'from' over any newline

if (null match)
break

// we are done

max = max >? length match
// remember max line length

}

if (max==0) { // no strings matched
boxed = "++\n++"
} else {
horiz = "+" // build a horizontal line
int i
for 1 in 1l:max+2 do // allow two spaces
horiz += '-!'

horiz += '+!
horiz += '\n'
from = 0 // reset offset
boxed += horiz

while (search(line, source, from)) {
// rescan buffer

int offset = end O

string match =
source[from: from+toffset]

if (null match)
break

from += offset + 2

// matches up to newline

DXL Reference Manual

173

174

boxed += '|' // add the vertical bars
boxed += "' !
boxed += match

for i in 1 : max - length match + 1 do
boxed += ' !
// add space to side of box

boxed += '|"

boxed += '\n'

}
boxed += horiz

return boxed

}

Buffer text = create

text = "The quick brown" // build a test string
text += '\n'

text += "fox Jjumped over"

text += '\n'

text += "the lazy dog"

cout = write "buffer.tmp"

cout << process text // print result

Arrays

This section describes a dynamically sized two-dimensional array data type. An example of its use is in the Rational DOORS
ASCII output generator in the tools library. As with skip lists, you must retrieve data into variables of the same data type as
they were put into the array, or program failure may occur.

Because DXL provides no garbage collection, it is important to delete DXI.’s dynamic arrays that are no longer required,
thereby freeing allocated memory.

Dynamic arrays are not a fundamental type inherited from DXL’s C origins, so the type name Array begins with an upper
case letter.

create(array)

Declaration

Array create(int x,
int vy)

DXL Reference Manual

175

Operation

Creates a dynamically sized array of initial bounds (x,y). Following C conventions, the minimum co-ordinate is (0,0), and
the maximum co-ordinate is (x-1,y-1). If an assignment is made to an array element outside these initial bounds, the array is
automatically resized. When viewing arrays with the printCharArray function, the X axis grows left to right across the
page, while the Y axis grows down the page.

Both arguments to create must be greater than or equal to 1.

Example

This example creates an array with 50 elements in the X direction accessed from (0,0) to (49,0), and only one element in the
Y direction:

Array firstArray = create(50,1)

delete(array)

Declaration

void delete (Array a)

Operation

Deletes array a; stored contents are not affected.

get(data from array)

Declaration

type get (Array a,
int x,
int y)

Operation

Returns the data, of any type, stored in array a at position (X, y). You must retrieve the data into a variable of the same type
as used when the data was put into the array. To ensure that this works unambiguously in the way intended, you should use
a cast prefix to the get command.

Atrays are not just for fundamental types like strings and integers. You can store any DXL type in them, for example,
objects, modules, skip lists, and even other arrays.

Example

This example uses a cast prefix to get:
Array a = create(10,10)
string str

int 1

put(a, "a string", 3, 4)
put(a, 1000, 3, 5)

DXL Reference Manual

176

str = (string get(a,3,4)) // cast get as string
print str "\n" // prints "a string"
i = (int get(a, 3, 5)) // cast get as int
print i // prints "1000"

This example stores an array in an array:

Array a = create(4,1)

Object obj = first current Module
Module mod = current

Skip skp = create

Array arr = create(l,1)

put(a, obj, 0, 0)

put(a, mod, 1, 0)
put(a, skp, 2, 0)
put(a, arr, 3

, 0)

put (arr,"I was nested in a!", 0, 0)

Object objRef (Object get(a,0,0))
Module modRef = (Module get(a,1,0))

Skip skpRef

(Skip get(a,2,0))

Array arrRef (Array get(a,3,0))

string str (string get (arrRef, 0, 0))

print str // prints "I was nested in a!"

get(string from array)

Declaration

string get (Array a,
int x,
int y,

int Ien)

Operation

Retrieves 1en characters as a string from a starting at position (x,y). This is the matching get command for putString.
Example

Array a = create(10,10)

putString(a, "a string", 2, 2)

string some = get(a, 4, 2, 3)

DXL Reference Manual

177

print some "\n" // prints "str"

put(data in array)

Declaration

void put (Array a,
type data,
int x,
int y)

Operation

Puts data, of any type, into array a at position (x,y). If the new position is outside a’s current bounds, a is resized to
accommodate the new element.

putString

Declaration

void putString(Array a,
string s,
int x,
int y)

Operation

Puts the string s into the array a in such a way that its character contents are placed in X-direction adjacent elements
starting at (x,y). The original, or any other desired string can be rebuilt by using the argument string form of get (a, x,
vy, len).The 3-argument form of get can be used to retrieve individual characters. Attempting to retrieve a character as

a string causes program failure.

printCharArray

Declaration

void printCharArray (Array a,
Stream s,
int xI,
int yI,
int x2,
int y2)
Operation

Sends the section of array a defined by the passed co-ordinates x1,y1 and x2,y2, to the stream s.

Example

Array a = create(20,5)

DXL Reference Manual

178

int x,y
for y in O 4 do
for x in O 19 do
put(a, '#', x, y)

Stream out = write "array.tmp"

printCharArray(a, out, O,

out << "\n"
putString(a, "abc", 3, 1)

printCharArray (a,
// view change

out, O,

out << "\n"

close out

DXL Reference Manual

0,

0,

19,

// populate an array with a
// block of # characters.

// open a stream

4)

// write original block

// insert a string

19,

4)

Chapter 13
Operating system interface

This chapter describes three major packages of functions that allow Rational DOORS to communicate with the host
operating system:

* Operating system commands
* Windows registry
¢ Interprocess communications

* System clipboard functions

Operating system commands

This section defines functions that interact with the operating system under which Rational DOORS is being run. For a
DXL program to be portable between platforms, care is needed when using these facilities. The functions that use the
Stat data type work on the stat API provided by the operating system, which enables DXL programs to determine the
status of files and directories.

platform

Declaration
string platform()

Operation

Returns the name of the current Rational DOORS platform, currently one of:

Linux® Linux
Solaris Sun
WIN32 All Windows platforms

This function can be used to make programs portable between platforms.

Example

string fileGoodName (string root, extpc, extunix) {
if (platform == "WIN32")
return currentDirectory "\\"
goodFileName root extpc

DXL Reference Manual

180

else
return (getenv "HOME") "/"
goodFileName root extunix

}

The function fileGoodName |, defined in $DOORSHOME/1ib/dx1/utils/ fileops.dxlusesplatformto
construct an appropriate file name for the current operating system. Using such functions enables DXL programs to be
useful on all platforms. Literal file names in programs may not be portable. The path /tmp/dx1/myfile may work ona
WIN32 platform, but ¢ : \temp\dx1\myfile cannot work on a UNIX platform.

getMemoryUsage

Declaration

int getMemoryUsage ()

Operation

Returns the Rational DOORS client memory usage in MB.

getenv

Declaration

string getenv (string var)

Operation
Returns the current value of the environment variable var, as set in the operating system. Both Windows and UNIX

platforms support this mechanism.

Note: You should know about your operating system’s environment variables before using this function. If necessary,
consult the operating system documentation.

Example

print getenv ("HOME")

print getenv ("DATA")

print getenv ("DOORSHOME")

print getenv ("DOORSDATA")

The first two examples return the corresponding variable values in the registry.

The second two examples return the corresponding variable values used in a command-line shortcut to start Rational
DOORS, if set. Otherwise, returns the values set in the registry.

DXL Reference Manual

181

hostname

Declaration

string hostname ()

Operation

Returns a string, which is the name of the current host system.

fullHostname

Declaration

string fullHostname (void)

Operation

Gets the fully qualified hostname of the machine on which the perm is executed.

mkdir

Declaration

void mkdir (string dirName
[,string osParm])

Operation
Creates directory dirName.

Optional argument 0s Parm can contain information that is dependent on the operating system, such as the UNIX octal

file access mask.

Example

The following example creates a typical UNIX path name, and sets the access rights:
mkdir ("/usr/development/phasel", "0755")

The following example creates a Windows path, for which there are no access rights:

mkdir ("C:\\DOORS\\DXLExample\\", "")

setenv

Declaration

void setenv(string var,
string s)

DXL Reference Manual

182

Operation

Sets the registry variable var to s in the registry section
HKEY CURRENT USER\Software\Telelogic\DOORS\<DOORS version>\Config, where <DOORS
version>is the version number of the current version of Rational DOORS installed.

Before using this function, you should be familiar with your operating system’s registry variables. If necessary, consult your

operating system documentation.

setServerMonitor

Declaration
vold setServerMonitor (bool on)

Operation

On Windows platforms only, when onis true, activates the Rational DOORS Server Monitor. This inserts an icon in the
Windows task bar that monitors client server communications.

serverMonitorlsOn

Declaration

bool serverMonitorIsOn ()

Operation

On Windows platforms only, returns t rue if the Rational DOORS Server Monitor is active. Otherwise, returns false.

username

Declaration
string username ()

Operation

Returns a string that contains the operating system defined user name under which Rational DOORS is being run. This may
not be the same as the Rational DOORS user name returned by doorsname, depending on the current project’s setup.

system

Declaration

void system(string command)

DXL Reference Manual

183

Operation

On Windows platforms only, passes the string command to the operating system for execution, and continues the current
DXL program. Using platform in conjunction with this function prevents an error message on UNIX platforms.
Example

if (platform=="WIN32")
system "notepad"

Note that if the command to be executed is a built in DOS command, such as del, you need, for example:

system "c:\\windows\\command.exe /c del temp.txt"

Declaration

void system(string command,
void childCB(int)
[,void parentCB()])

Operation
On UNIX platforms only, passes the string command to the operating system for execution.

Unlike the Windows system function, these functions terminate the current execution path of the calling DXL program.
One or two callback functions must be provided. In the first form, only a function chi1dCB is needed. This function is
called when the operating system finishes execution of command. In the second form, parentCBis also provided; this is
called concurrently with the operating system’s processing of command, enabling the calling DXL program to continue
work while the command is being executed.

Example

void cb () {
print "system command executing\n"

}

void nullCB(int status) {
}

if (platform == "WIN 32") {
system ("E: \\winnt\\system32\\command.exe")

cb
} else{
system ("xterm", nullCB, cb)

create(status handle)

Declaration
Stat create (Stream s)

Stat create(string filename)

DXL Reference Manual

184

Operation

Returns a status handle for the stream or file name, which is used in the other Stat functions.

delete(status handle)

Declaration

void delete (Stat s)

Operation

Deletes the handle s.

accessed, modified, changed(date)

Declaration
Date accessed(Stat s)
Date modified (Stat s)

Date changed(Stat s)

Operation

Returns the accessed, modified or changed date of the stream or file identified by the handle.

directory, symbolic, regular

Declaration
bool directory(Stat s)
bool symbolic (Stat s)

bool regular (Stat s)

Operation

Returns true if the stream or file identified by the handle is a directory, a symbolic link, or a regular file respectively.
Example

Stat s

string filename = "/etc"

s = create filename

if (!'null s && directory s)
ack filename " is a directory!"

DXL Reference Manual

user, size, mode

Declaration

string user (Stat s)

int size(Stat s)

int mode (Stat s)

Operation

Returns the user name (PC file on windows), size, or mode of the stream or file identified by the handle.

The following constant integers are used with the int mode (Stat) function as bit-field values (using standard UNIX

stat semantics).

Constant Meaning
S_ISUID set user id on execution
S_ISGID set group id on execution
S_IRWXU read, write, execute permission: owner
S_IRUSR read permission: owner
S_TWUSR wtite permission: owner
S_IXUSR execute/search permission: owner
S_IRWXG read, write, execute permission: group
S_IRGRP read permission: group
S_IWGRP write permission: group
S_IXGRP execute/search permission: group
S_IRWXO read, write, execute permission: other
S_IROTH read permission: other
S_IWOTH wtite permission: other
S_IXOTH execute/search
Example
The following example shows how to emulate the formatting of part of the UNIX command 1s
string filename = "/etc"
Stat s = create filename

DXL Reference Manual

185

186

if (!'null s) {
int modes = mode s

print (modes&S ISUID!=0 ? 's' : '-")
print (modes&S IRUSR!=0 2 'r' : '-")
print (modes&S IWUSR!=0 ? 'w' : '-'")
print (modes&S IXUSR!=0 ? 'x' : '-")
print (modes&S IRGRP!=0 2 'r' : '-")
print (modes&S IWGRP!=0 ? 'w' : '-'")
print (modes&S IXGRP!=0 ? 'x' : '-")
print (modes&S IROTH!=0 2 'r' : '-")
print (modes&S IWOTH!=0 ? 'w' : '-'")
print (modes&S IXOTH!=0 ? 'x' : '-")

print "\t" filename

Status handle functions example

This example is taken from $DOORSHOME/lib/dxl/utils/fileops.dxl.

bool fileExists (string filename) {
Stat s

s = create filename
if (null s) return false
delete s
return true
}

It is used by several of the DXL Library tools to determine whether a file exists.

Windows registry

getRegistry

Declaration

string getRegistry(string keyName,
string valueName)

DXL Reference Manual

187

Operation

Returns a string representation of the named value of the specified Windows registry key.

The keyName argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT USER

HKEY LOCAL MACHINE

HKEY CLASSES ROOT

HKEY USERS

If valueName is null, returns the default value for the key. If the key does not exist, the value does not exist, or the
operating system is not a Windows platform, returns null.

Example

string s = "HKEY CURRENT USER\\SOFTWARE\\Microsoft
Office\\9.3\\Common\\LocalTemplates"

print getRegistry (s, null) "\n"

string s = "HKEY CURRENT USER\\SOFTWARE\\Microsoft Office\\95\\WORD\\OPTIONS"
print getRegistry (s, "DOC-PATH") "\n"

setRegistry
Declaration

string setRegistry(string keyName,
string valueName,
{stringl|int} value)

Operation

Sets the named value of the specified registry key to have the value supplied and the appropriate registry type, as follows:

Type of value Registry type
string value REG SZ
integer value REG DWORD

The key is created if one does not already exist. If valueName is null, the default key value is set.

The keyName argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT USER

HKEY LOCAL MACHINE

HKEY CLASSES ROOT

HKEY USERS

DXL Reference Manual

188

This function is only usable on Windows platforms.

If the operation fails, returns an error message; otherwise returns null.

Example

string s = "HKEY CURRENT USER\\SOFTWARE\\XYZ Inc.\\The Product\\Verification"
// Set default value of key

string errMess = setRegistry(s, null, "Default string value")

// Set named string value

errMess = setRegistry (s, "Configuration Parameter", "Is enabled")

// Set named integer value

checkStringReturn setRegistry (s, "Usage count", 1234)

deleteKeyRegistry

Declaration

string deleteKeyRegistry(string keyName)

Operation

Deletes the named key from the registry, therefore extreme caution should be used.

The keyName argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT USER

HKEY LOCAL MACHINE

HKEY CLASSES ROOT

HKEY USERS

This function is only usable on Windows platforms.

If the operation fails, returns an error message; otherwise returns null.

Example

// Clear up keys created

string errMess = deleteKeyRegistry "HKEY CURRENT USER\\-
SOFTWAREA\XYZ Inc.\\The Product\\Verification"

errMess = deleteKeyRegistry "HKEY CURRENT USER\\SOFTWARE\\XYZ Inc.\\The
Product"

errMess = deleteKeyRegistry "HKEY CURRENT USER\\SOFTWARE\\XYZ Inc."

DXL Reference Manual

189

deleteValueRegistry

Declaration

string deleteValueRegistry(string keyName,
string valueName)

Operation

Deletes the named value from the specified registry key. If valueName is null, deletes the default value for the key.

Note: Use caution when calling this function.

The keyName argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT USER

HKEY LOCAL MACHINE

HKEY CLASSES ROOT

HKEY USERS

This function is only usable on Windows platforms.

If the operation fails, returns an error message; otherwise returns null.

Example

string s = "HKEY CURRENT USER\\SOFTWARE\\XYZ Inc.\\-
The Product\\Verification"

// Delete named value

string errMess = deleteValueRegistry (s, "Usage count")

// Delete default value

errMess = deleteValueRegistry(s, null)

Interprocess communications

There are two forms of interprocess communications (IPC):

* The first uses TCP/IP. It can be used with the UNIX and Windows opetating systems on all supported platforms.
* The second uses sockets, where a file is used to pass messages. It works only on UNIX platforms.

For examples of how to use DXL IPC functions, see the Rational DOORS API Manual.

Windows programs can also use OLE Automation functions to communicate with other programs.

DXL Reference Manual

190

ipcHostname

Declaration

string ipcHostname (string ipAddress)

Operation

Resolves the IP address ipAddress to its host name.
Example
This example prints localhost in the DXL Interaction window’s output pane.

print ipcHostname ("127.0.0.1")

server

Declaration
IPC server (string socket)

IPC server (int port)

Operation
The first form establishes a server connection to the UNIX socket socket.

The second form establishes a server connection to the port number port on all platforms. In the case that supplied port
number is 0, an ephemeral port number is allocated by the operating system. To fetch this ephemeral port number, use
getPort () on the resulting IPC.

getPort

Declaration
int getPort (IPC channel)

Operation

Fetches the port associated with the specified IPC. Useful when the IPC is allocated an ephemeral port by the operating
system (see IPC server (int)).

client

Declaration
IPC client (string socket)

IPC client (int ip,
string host)

DXL Reference Manual

191

Operation
The first form establishes a client connection to the UNIX socket socket.

The second form establishes a client connection to the IP address ip at host on all platforms.

accept

Declaration
bool accept (IPC)

Operation

Wiaits for a client connection at the server end of the connection.

send

Declaration

bool send(IPC chan,
string message)

Operation

Sends the string message down IPC channel chan.

recv
Declaration
bool recv (IPC chan,
{string|Buffer} &response
[,int tmt])
Operation
Wiaits for a message to arrive in channel chan and assigns it to string or buffer variable response.
The optional third argument defines a timeout, tmt seconds, for a message to arrive in channel chan. If tmt is zero, these
functions wait forever. They only work if the caller is connected to the channel as a client or a setver.
disconnect

Declaration

void disconnect (IPC chan)

Operation

Disconnects channel chan.

DXL Reference Manual

192‘

delete(IPC channel)

Declaration

void delete (IPC chan)

Operation

Deletes channel chan (can be a setver or a client).

System clipboard functions

copyToClipboard

Declaration
bool copyToClipboard(string s)

Operation

Copies a plain text string (not RTF) to the clipboard. On success, returns true.

setRichClip

Declaration
void setRichClip (RTF string s, string styleName, string fontTable)
void setRichClip(Buffer buff, string styleName, string fontTable)

void setRichClip (RTF string s, string styleName, string fontTable, bool
keepBullets, bool keepIndents)

void setRichClip(Buffer buff, string styleName, string fontTable, bool
keepBullets, bool keepIndents)
Operation

First form sets the system clipboard with the rich text obtained by applying the style sty leName to the string s, using the
font table font Table supplied, which should include a default font. Font numbers in the string s will be translated to the
supplied font table fontTable.

Second form is same as the first but the soutce is a buffer buff rather than an RTF_string .

Third form sets the system clipboard with the rich text obtained by applying the style sty leName to the string s, using
the font table fontTable supplied. If keepBulletsis false, any bullet characters are removed from string s. If
keepIndentsis false, any indentation is removed from string s. If keepBullets and keepIndents are both
true, the behavior is exactly the same as the first form.

DXL Reference Manual

193

Fourth form is same as the third but the source is a buffer buff rather than an RTF _string .

Example 1

The following code:

string s = "hello"

string fontTable = "\\deffO{\\fonttbl {\\fl Times New Roman;}}"
setRichClip (richText s, "Normal", fontTable)

puts the following rich text string onto the system clipboard:

{\rtfl \deffO{\fonttbl {\fl Times New Roman; }}{\stylesheet {\sl Normal;}}{\sl
hello\par}}

Example 2

string bulletedString =
"{\\rtfl\\ansi\\ansicpgl252\\deff0\\deflangl033{\\fonttbl {\\£0\\fswiss\\fcharse
t0 Arial;}{\\f1\\fnil\\fcharset2 Symbol;}}

\\viewkind4\\ucl\\pard\\f0\\fs20 Some text with\\par

\\pard{\\pntext\\£I\\'B7\\tab} {*\\pn\\pnlvlblt\\pnfl\\pnindentO {\\pntxtb\\ 'B7
FINNEL-720\\1i720 bullet 1\\par

{\\pntext\\fI\\'B7\\tab}bullet 2\\par
\\pard bullet points in it.\\par
\\par

po

string fontTable = "\\deffO{\\fonttbl{\\fO\\fswiss\\fcharsetO
Arial; } {\\fI\\fnil\\fcharset2 Symbol;}}"

setRichClip (richText bulletedString, "Normal", fontTable)

// the previous call puts

// "{\rtfl \deffO{\fonttbl{\fO\fswiss\fcharset0 Arial;}{\fl\fnil\fcharset?2
Symbol; }}{\stylesheet {\sl Normal;}}{\sl Some text with\par {\fl\'b7\tabl}bullet
I\par {\fl\'b7\tab}bullet 2\par bullet points in it.\par \par}}"

// on the clipboard

setRichClip (richText bulletedString, "Normal", fontTable, false, false)

// the previous call puts

DXL Reference Manual

194

// "{\rtfl \deffO{\fonttbl{\fO\fswiss\fcharset0 Arial;}{\fl\fnil\fcharset2
Symbol; }}{\stylesheet {\sl Normal;}}{\sl Some text with\par bullet I1\par bullet

2\par bullet points in it.\par \par}}"
// on the clipboard -- note no bullet symbols (\'b7) in the markup

DXL Reference Manual

Chapter 14

Customizing Rational DOORS

This chapter explains how you can customize Rational DOORS:

Color schemes

Database Explorer options
Locales

Codepages

Message of the day

Database Properties

Color schemes

This section defines constants and functions for setting the Rational DOORS color scheme.

Display Color Schemes

The following constants are defined as database display schemes for use with the functions below:

originalDOORSColo[u] rScheme

modernDOORSColo[u] rScheme

highContrastOneColo[u] rScheme

highContrastTwoColo[u] rScheme

highContrastBlackColo[u] rScheme

highContrastWhiteColo[u] rScheme

getDefaultColorScheme

Declaration

int getDefaultColo[u]rScheme ()

Operation

Returns the default color scheme used by the Database Explorer The possible values for colorScheme are listed above.

DXL Reference Manual

195

196

setDefaultColorScheme

Declaration

void setDefaultColo[u]rScheme (int colorScheme)

Operation

Sets the default color scheme used by the Database Explorer. Schemes can be created and modified using the Display tab
in the Options dialog box (from the Tools > Options menu in the Database Explorer. The possible values for
colorScheme are listed above:

optionsExist

Declaration

bool optionsExist (string schemeName)

Operation

Returns true if a color scheme exists under schemeName; otherwise, returns false.

resetColors

Declaration
void resetColors([int colorScheme])

Operation

If no argument is supplied, resets to the default color scheme otherwise resets to colorScheme, which can any of the

values listed above.

resetColor

Declaration
void resetColor (int colorIndex

[,int colorSchemel)
Operation

Resets the color specified by colorIndex to the default, or if the second argument is supplied, to colorScheme,
which can be any of the values listed above.

DXL Reference Manual

197

Database Explorer options

This section defines constants and functions for customizing the Database Explorer.

Font constants

Declaration

int HeadingsFont
int TextFont

int GraphicsFont

Operation

These constants define the font in the getFontSettings and setFontSettings functions.

getFontSettings

Declaration

void getFontSettings (int level,
int usedIn,
int &size,
int &family,
bool &bold,
bool &italic)

Operation

Passes back settings for the font usedIn for objects at heading level Ievel. The value of usedIn can be
HeadingsFont, TextFont, or GraphicsFont. The last four arguments pass back the point size, font family,
whether the font is bold, and whether the font is italic. The constants for point size are the following:

e l4pt=5
+ 12pt=4
« 1lpt=3
e 10pt=2
* Ipt=1
e 8pt=0

DXL Reference Manual

198

setFontSettings

Declaration

void setFontSettings (int level,
int usedIn,
int size,
int family,
bool bold,
bool italic)

Operation

Sets the point size, font family, whether the font is bold, and whether the font is italic for the font usedIn for objects at
heading level 1evel. The value of usedIn can be HeadingsFont, TextFont, or GraphicsFont. The constants
for point size are the following:

* l4pt=5
e 12pt=4
e 1lpt=3
* 10pt=2
* Ipt=1
e 8pt=0

refreshExplorer

Declaration

void refreshExplorer (Module m)

Operation

Refreshes the Database Explorer window for module m.

synchExplorer

Declaration

void synchExplorer (Module m)

Operation

Refreshes the Rational DOORS Module Explorer window to reflect changes to the current object selected in the module
display.

DXL Reference Manual

199

refreshDBExplorer

Declaration

void refreshDBExplorer ()

Operation

Refreshes the Database Explorer window to reflect changes to the current folder or the display state. If the current
folder/project is changed using DXL, this perm will not change the currently open item to reflect this. This is used to only
refresh the contents of the currently selected item.

setShowFormalModules, setShowDescriptiveModules, setShowLinkModules

Declaration
void setShowFormalModules (bool expression)
void setShowDescriptiveModules (bool expression)

void setShowLinkModules (bool expression)

Operation

Shows formal, descriptive, or link modules in the Database Explorer if expressionis true. Hides formal, descriptive,

ot link modules if expressionis false.

showFormalModules, showDescriptiveModules, showLinkModules(get)

Declaration
bool showFormalModules ()
bool showDescriptiveModules ()

bool showLinkModules ()

Operation

Returns true if the Database Explorer is set to show formal, descriptive, or link modules; otherwise returns false.

getSelectedltem

Declaration
Item getSelectedItem()

Operation

Return the item cutrently selected in the Database Explorer.

DXL Reference Manual

200 ‘

Mini database explorer

fnMiniExplorer

Creates a miniature database explorer window that shows a tree view in which you can navigate through the hierarchy of the
Rational DOORS database and select an item. The layout of the tree view depends on whether your main client window is
configured for Project View or Database View. The items that are displayed can be controlled through the use of a filter.

By default, only projects and folders are populated. You must explicitly choose module types. For ease of use, it is possible
to have the tree view expand to a particular start location. The dialog box is modal and therefore prevents other use of the
Rational DOORS client while it is displayed.

Declaration

string fnMiniExplorer ([Folder f | DB parent,] int itemFilter, string titleBar,
string userPrompt)

Operation

Returns the name of the module if found otherwise returns an empty string.

Optional parameter f specifies the folder where the tree-view will auto-expand.

Optional parameter parent specifies the parent DXL dialog.

Parameter titleBar specifies the title window. If no value is specified (i.e. null or empty string) then “DOORS Database
Mini-Exploret" will be shown.

Parameter userPrompt specifies the user prompt. If no value is specified (i.e. null or empty string) then "Please make your
selection..." will be shown.

Parameter itemFilter specifies what module types are shown in the tree-view. This is a bit mask that can have the following

values:
Value Use this flag to include...
MINI_EXP_LINK_MODS Link modules
MINI EXP FORMAL MODS Formal modules
MINI EXP DESCRIPTIVE MODS Descriptive modules

DXL Reference Manual

201

Value Use this flag to include...

MINI EXP_ SHOW DELETED Soft-deleted modules

MINI EXP SHOW ALL NO DELETED All module types

MINI EXP_ SHOW ALL All module types and soft-deleted modules
Example

string moduleName = fnMiniExplorer (folder ("/My Project/My Folder"),
MINI EXP FORMAL MODS | MINI EXP LINK MODS, "Browse", "Select a source module")

Locales

getDateFormat

Declaration
string getDateFormat ([Locale 1], [bool isShortFormat])

Operation

When called with no arguments, this returns the current default short date format. This may be selected for the current user
locale, using the Windows Control Panel. If the boolean argument is supplied and is false, the default long date format is

returned.

Locale type

Operation

This type represents any valid user locale value. It can take any of the values supported by the client system.

The perms that take a Locale argument will all return a DXL run-time error if they are supplied with a null value.

for Locale in installedLocales

Declaration

for Locale in installedLocales

Operation

This iterator returns all the Locale values installed on the client system.

DXL Reference Manual

202

Example
Locale loc
for loc in installedLocales do

{

print id(loc) ": " name(loc) "\n"

for Locale in supportedLocales

Declaration

for Locale in supportedLocales

Operation

This iterator returns all the Locale values supported on the client system.

userLocale

Declaration

Locale userLocale()

Operation

This returns the current user locale on the client system.

name

Declaration

string name (Locale 1)

Operation

This returns the name (in the current desktop language) of the specified Locale.

language

Declaration

string language (Locale 1)

Operation

This returns the English name of the Locale language.

DXL Reference Manual

203

region

Declaration

string region (Locale 1)

Operation

This returns the English name of the country/region of the Locale.

Declaration

int id(Locale 1)

Operation

This returns the integer identifier value for the Locale. This is a constant for any given Locale.

locale

Declaration
Locale locale(int 1)

Operation

This returns the Locale for the specified identifier value. It returns null if the integer value is not a valid supported locale

identifier.

installed

Declaration
bool installed(Locale 1)

Operation

This returns t rue if the Locale is installed on the client machine. Otherwise it returns false.

attributeValue

Declaration
bool attributeValue (AttrDef attr, string s[, bool bl])

DXL Reference Manual

204

Operation

Tests whether the supplied string represents a valid value for the specified attribute definition. If the third argument is
supplied and set to true, the function will return true if the attribute base type is date and the string is a valid date string
for the user’s current Locale setting.

locale

Declaration
AttrDef.locale()

Operation
Use to access the locale of the specified At trDe£. It returns null if there is no locale specified by the attribute definition.
Example
AttrDef ad = find(current Module, "Object Text")
Locale loc = ad.locale
print "Object Text locale is " name (loc) "\n"setLocale
getLegacylLocale
Declaration

Locale getLegacyLocale (void)

Operation

Returns the legacy data locale setting for the database. This determines the locale settings that are used to display legacy
attribute data. If none is set, this returns null, and legacy attribute values are displayed according to the settings for the

current user locale.

setLe

gacylLocale

DXL Reference Manual

Declaration

string setlegacyLocale (Locale 1)

Operation

This enables users with Manage Database privilege to set the Legacy data locale for the database (as explained above).
setLegacyLocale (null) removes the Legacy data locale setting for the database. Returns null on success, and an
error string on failure, including when it is called by a user without Manage Database privilege.

205

Single line spacing constant

Declaration

int single

Operation

This constant is used to specify single line spacing.

Line spacing constant for 1.5 lines

Declaration

int onePointFive

Operation

This constant is used to specify 1.5 lines line spacing.

setLineSpacing

Declaration
void setLineSpacing(int IineSpacing)
Operation

Sets line spacing for the current locale.

Example

setLineSpacing (single)

getLineSpacing

Declaration

int getLineSpacing()

Operation

Retrieves the line spacing for the current locale.
Example

if (getLineSpacing() == onePointFive)

{

print "Line spacing is set to One and a half lines.\n"

DXL Reference Manual

206

setLineSpacing

Declaration

void setlLineSpacing(Locale locale, int lineSpacing)

Operation

Sets line spacing for the desired locale.

getLineSpacing

Declaration

int getLineSpacing(Locale locale)

Operation

Retrieves the line spacing for the desired locale.

getDefaultLineSpacing

Declaration
int getDefaultLineSpacing(void)

Operation

Returns the default line spacing for the user’s current locale. For example, it will return single when the line spacing is
European, onePointFive when the line spacing is Japanese, Chinese, or Korean, and so on.

getFontSettings

Declaration

void getFontSettings (int level, int usedIn, int &size, string &family, bool
&bold, bool &italic, Locale locale)

Operation

Gets the current user’s font-related display options for the locale provided. The usedIn parameter can be one of the
following constants: HeadingsFont, TextFont or GraphicsFont.

Example
int pointSize

string fontFamily

DXL Reference Manual

207

bool bold, italic
getFontSettings (2, TextFont, pointSize, fontFamily, bold, italic, userLocale)

print fontFamily ", " pointSize ", " bold ", " italic "\n"

setFontSettings

Declaration

void setFontSettings (int level, int usedIn, int size, string family, bool bold,
bool italics, Locale locale)

Operation

Sets the current user’s font-related display options for the locale provided.

for string in availableFonts do

Declaration

for string in availableFonts do {}

Operation

Iterator over the specified availableFonts.

Example
string fontName

for fontName in availableFonts do {

}

Provides access to the names of each of the available fonts.

Codepages

Constants

Constants for codepages

The following constants denote codepages:

e constint CP_LATIN1 // ANSI Latin-1

* constint CP_UTF8 // Unicode UTF-8 encoding

DXL Reference Manual

208

* constint CP_UNICODE // UTF-16 little-endian encoding (= CP_UTF16_LE)
* constint CP_UTF16_LE // UTF-16 little-endian encoding

* constint CP_UTF16_BE // UTF-16 big-endian encoding

* constint CP_JAP // Japanese (Shift-]JIS)

« constint CP_CHS // Simplified Chinese (GB2312)

* const int CP_KOR // Korean (KSC 5601)

* constint CP_CHT // Traditional Chinese (Big 5)

for int in installedCodepages

Declaration

for int in installedCodepages do

Operation

This iterator returns the values of all the codepages installed in the client system.

for int in supportedCodepages

Declaration

for int in supportedCodepages do

Operation

This iterator returns the values of all codepages supported by the client system. Some of these may not be currently
installed.

currentANSIcodepage

Declaration
int currentANSIcodepage ()

Operation

Returns the current default ANSI codepage for the client system. For example, in Western Europe and North America this
will typically return 1252, equivalent to ANSI Latin-1.

codepageName

Declaration

string codepageName (int codepage)

DXL Reference Manual

209

Operation

This returns the name of the specified codepage. Note that this returns an empty string for any codepage that is not installed

on the system.

read

Declaration

Stream read(string filename, int codepage)

Operation

Opens a stream onto the specified filename; content of file decoded from the specified codepage.

write

Declaration

Stream write(string filename, int codepage)

Operation

Opens a stream onto the specified filename; content of file encoded to the specified codepage.

append

Declaration

Stream append(string filename, int codepage)

Operation

Opens a stream for append onto the specified filename; content of file encoded to the specified codepage.

readFile

Declaration

string readFile(string filename, int codepage)

Operation

Reads string from specified file; content is decoded from the specified codepage.

Note: The Files function also has a readFile operatot. For information about Files and readFile, see “readFile,” on page
138.

DXL Reference Manual

210

isValidChar

Declaration

bool isValidChar (char ¢, int codepage)

Operation

Returns true only if the supplied character can be represented in the specified codepage.

convertToCodepage

Declaration

{string|Buffer} convertToCodepage (int codepage, {string|Buffer&} utf8string)

Operation

Returns a version of the supplied string or buffer, encoded according to the specified codepage. The supplied string is
assumed to be encoded in UTF-8 (the default encoding for all Rational DOORS strings).

Note: Only UTF-8 strings will print and display correctly in Rational DOORS V8.0 and higher. This perm is intended for
use in exporting string data for use in other applications.

Example

string latinlstr = covertToCodepage (CP_LATIN1, “fir Elise”)

convertFromCodepage

Declaration

{string|Buffer} convertFromCodepage (int codepage, {string|Buffer&} cpString)

Operation

Converts a string or buffer from the specified codepage to the Rational DOORS default UTF-8 encoding. Once a
non-UTF-8 string is converted to UTF-8, it can be displayed and printed by Rational DOORS, including 8-bit (non-ASCII)
characters.

Example

int port=5093

int iTimeOut=10

IPC ipcServerConn=server (port)

string inputStr

if ('accept (ipcServerConn))

DXL Reference Manual

211

print "No connection\n";

}

else while (recv (ipcServerConn, inputStr, iTimeOut))

{

inputStr = convertFromCodepage (currentANSIcodepage (), inputStr)

print inputStr "\n";

Message of the day

setMessageOfTheDay

Declaration
string setMessageOfTheDay (string message)

Operation

This is used to set the message of the text in the database. Returns null if successful, returns an error if the user does not
have the manage database privilege.

setMessageOfTheDayOption

Declaration
string setMessageOfTheDayOption (bool setting)

Operation

Used to turn the message of the day on or off . Returns an error if the user does not have the manage database privilege,

otherwise returns null.

getMessageOfTheDay

Declaration
string getMessageOfTheDay ()

Operation

Returns the message of the day if one is set, otherwise returns null.

DXL Reference Manual

212

getMessageOfTheDayOption

Declaration

bool getMessageOfTheDayOption ()

Operation

Used to determine whether the message of the day is enabled. Returns true if it is enabled, otherwise returns false.
Example

string sl, s2, message

message = "Hello and welcome to DOORS!"

if (getMessageOfTheDayOption()) {
print "Current message of the day is : " (getMessageOfTheDay())
} else {
print "No message of the day is set, setting message and turning on."
sl = setMessageOfTheDay (message)
if (!'null s1){
print "There was an error setting the message of the day : " sl
} else {
s2 = setMessageOfTheDayOption (true)
if (!'null s2){

print "There was an error turning on the message of the day :" s2

Database Properties

setLoginFailureText

Declaration

string setLoginFailureText (string msqg)

DXL Reference Manual

213

Operation

Sets the string as the pretext for login failure Emails sent through Rational DOORS. Returns null on success or failure error

message.

getLoginFailureText

Declaration

string getLoginFailureText (void)

Operation
Gets the string used for login failure Emails sent through Rational DOORS.

setDatabaseMailPrefixText

Declaration

string setDatabaseMailPrefixText (string msg)

Operation

Sets the string as the pretext for Emails sent through Rational DOORS. Returns null on success or failure error message.

getDatabaseMailPrefixText

Declaration

string getDatabaseMailPrefixText (void)

Operation
Gets the string used in Emails sent through Rational DOORS.

setEditDXLControlled

Declaration
string setEditDXLControlled (bool)

Operation

Activates or de-activates the database wide setting determining whether the ability to edit DXL will be controlled. Returns

null on success, or an error on failure.

DXL Reference Manual

214

getEditDXLControlled

Declaration
bool getEditDXLControlled (void)

Operation

Used to determine if the ability to edit DXL is controlled in the database. Returns true if the ability to edit DXL can be
denied.

DXL Reference Manual

215

Chapter 15

Rational DOORS database access

This chapter covers:

* Database properties

* Group and user manipulation
e Group and user management
« LDAP

* LDAP Configuration

* LDAP server information

* LDAP data configuration

* Rational Directory Server

Database properties

This section defines functions for Rational DOORS database properties. DXL defines the data type LoginPolicy,
which can take either of the following values:

viaDOORSLogin
viaSystemLogin

These values control how users log in to Rational DOORS, using the Rational DOORS user name or the system login
name.

getDatabaseName

Declaration

string getDatabaseName ()

Operation

Returns the name of the Rational DOORS database.

setDatabaseName

Declaration

bool setDatabaseName (string newName)

DXL Reference Manual

216

Operation

Sets the name of the Rational DOORS database to newName. If the operation succeeds, it returns t rue; otherwise, it
returns false. The operation fails if the name contains any prohibited characters.

This perm only operates if the current user has the Manage Database privilege, otherwise it returns false.

getAccountsDisabled

Declaration

bool getAccountsDisabled ()

Operation

If standard and custom user accounts for the current database are disabled, returns t rue; otherwise, returns false.

Example

if (getAccountsDisabled()) {
print "Only those with May Manage Power can
log in"

setAccountsDisabled

Declaration

void setAccountsDisabled (bool disabled)

Operation

Disables or enables standard and custom user accounts for the current database, depending on the value of disabled.

This perm only operates if the cutrent user has the Manage Database privilege, otherwise an error message is displayed.

Note: A saveDirectory () command must be used for this to take effect.

Example
This example disables all standard and custom user accounts:
setAccountsDisabled (false)

saveDirectory ()

getDatabaseldentifier

Declaration

string getDatabaseIdentifier ()

DXL Reference Manual

217

Operation

Returns the unique database identifier generated by Rational DOORS duting database creation.

getDatabasePasswordRequired

Declaration

bool getDatabasePasswordRequired ()

Operation

Returns true if passwords are required for the current Rational DOORS database; otherwise, returns false.

setDatabasePasswordRequired

Declaration

void setDatabasePasswordRequired (bool required)

Operation

Sets passwords required or not required for the current database, depending on the value of required.

This perm only operates if the current user is the administrator, otherwise an error message is displayed.

getReconfirmPasswordRequired

Declaration

bool getReconfirmPasswordRequired /()

Operation

Returns true if a reconfirmation password is required after a specified timeout period; otherwise, returns false.

setReconfirmPasswordRequired

Declaration

void setReconfirmPasswordRequired (bool required)

Operation

Sets whether a reconfirmation password is required after a specified timeout period, depending on the value of required.

This perm only operates if the cutrent user has the Manage Database privilege.

DXL Reference Manual

218

getReconfirmPasswordTimeout

Declaration

int getReconfirmPasswordTimeout ()

Operation

Returns the timeout period (in minutes) before the reconfirmation password dialog appears.

setReconfirmPasswordTimeout

Declaration

void setReconfirmPasswordTimeout (int timeout)

Operation

Sets the timeout period to timeout minutes before the reconfirmation password dialog appears.

This perm only operates if the cutrent user has the Manage Database privilege.

getRequireLettersinPassword

Declaration

bool getRequirelettersInPassword ()

Operation

Returns true if a password is required to contain at least one alphabetic character; otherwise, returns false.

setRequirelLettersinPassword

Declaration

string setRequirelettersInPassword (bool required)

Operation
If requiredis true, then a password is required to contain at least one alphabetic character.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getRequireNumberinPassword

Declaration

bool getRequireNumberInPassword ()

DXL Reference Manual

219

Operation

Returns true if a password is required to contain at least one number; otherwise, returns false.

setRequireNumberlinPassword

Declaration

string setRequireNumberInPassword (bool required)

Operation
If required is true, a password is required to contain at least one number.

This perm only operates if the cutrent user has the Manage Database privilege, otherwise an error message is returned.

getRequireSymbollnPassword

Declaration

bool getRequireSymbolInPassword ()

Operation

Returns true if a password is required to contain at least one non-alphanumeric character; otherwise, returns false.

setRequireSymbollnPassword

Declaration

string setRequireSymbolInPassword(bool required)

Operation

If required is true, a password is required to contain at least one non-alphanumeric character.

This perm only opetates if the cutrent user has the Manage Database privilege, otherwise an error message is returned.

getDatabaseMinimumPasswordLength

Declaration

int getDatabaseMinimumPasswordLength ()

Operation

Returns the minimum number of characters required for a password on the current database.

DXL Reference Manual

220

setDatabaseMinimumPasswordLength

Declaration

void setDatabaseMinimumPasswordLength (int Iength)

Operation
Sets the length of password required for the current database to Iength characters. The value can be any non-negative
integer.

This perm only operates if the current user has the Manage Database privilege.

getMinPasswordGeneration

Declaration

int getMinPasswordGeneration ()

Operation

Returns the minimum number of password generations before a password can be reused.

setMinPasswordGeneration

Declaration

string setMinPasswordGeneration (int num)

Operation

Sets the minimum number of password generations before a password can be reused to num. The minimum number
cannot exceed the in-built maximum limit of 12 generations before a password can be reused.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getMaxPasswordGenerationLimit

Declaration

int getMaxPasswordGenerationLimit ()

Operation
Returns the in-built maximum limit of password generations before a password can be reused. This maximum limit is set to
12.

DXL Reference Manual

221

getMinPasswordAgelnDays

Declaration

int getMinPasswordAgeInDays ()

Operation

Returns the minimum number of days before a password can be reused.

setMinPasswordAgelnDays

Declaration

string setMinPasswordAgelInDays (int days)

Operation
Sets the minimum number of days before a password can be reused to days. The minimum number cannot exceed the
in-built maximum limit of 180 days before a password can be reused.

This perm only operates if the cutrent user has the Manage Database privilege, otherwise an error message is returned.

getMaxPasswordAgeLimit

Declaration

int getMaxPasswordAgeLimit ()

Operation

Returns the in-built maximum limit of days before a password can be reused. This maximum limit is set to 180 days.

getDatabaseMailServer

Declaration

string getDatabaseMailServer (void)

Operation
Returns as a string the name of the SMTP mail server for Rational DOORS.

setDatabaseMailServer

Declaration

void setDatabaseMailServer (string serverName)

DXL Reference Manual

222

Operation
Sets the mail server for the current database to serverName.

This perm only operates if the current user has the Manage Database privilege.

getDatabaseMailServerAccount

Declaration

string getDatabaseMailServerAccount (void)

Operation

Returns as a string the name of the mail account that appears to originate messages from Rational DOORS.

setDatabaseMailServerAccount

Declaration

void setDatabaseMailServerAccount (string accountName)
Operation
Sets to accountName the mail account that appeats to originate messages from Rational DOORS.

This perm only operates if the current user has the Manage Database privilege.

getLoginPolicy

Declaration
LoginPolicy getLoginPolicy ()

Operation

Returns the login policy (either viaDOORSLogin or viaSystemLogin) for the current database. These values control
how users log in to Rational DOORS, using the Rational DOORS name or the system login name.

setLoginPolicy

Declaration
void setLoginPolicy(LoginPolicy policy)

Operation

Sets the login policy for the current database to policy, which can be either viaDOORSLogin or
viaSystemLogin.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is displayed.

DXL Reference Manual

223

getDisableLoginThreshold

Declaration
int getDisableLoginThreshold ()

Operation

Returns the number of times a user account tolerates a failed login. If the number of login failures to any single account
exceeds this value, Rational DOORS disables that account. Nobody can use a disabled account.

If the return value is zero, there is no limit. See also the getFailedLoginThreshold function.

setDisableLoginThreshold

Declaration
void setDisableloginThreshold(int attempts)

Operation

Sets the number of times a user account tolerates a failed login. If the number of login failures to any single account exceeds
this value, Rational DOORS disables that account. Nobody can use a disabled account.

If attempts is zero, there is no limit. See also the setFailedLoginThreshold function.

This perm only operates if the cutrent user has the Manage Database privilege, otherwise an error message is displayed.

getFailedLoginThreshold

Declaration
int getFailedLoginThreshold()

Operation
Returns the number of times Rational DOORS tolerates a login failure. If this threshold is exceeded, Rational DOORS

closes.

If the return value is zero, there is no limit. See also the setDisableLoginThreshold function.

setFailedLoginThreshold

Declaration
void setFailedLoginThreshold(int attempts)

Operation
Sets the number of times Rational DOORS tolerates a login failure. If this threshold is exceeded, Rational DOORS closes.

If attempts is zero, thete is no limit. See also the setDisableLoginThreshold function.

DXL Reference Manual

224

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is displayed.
Note: A saveDirectory () command must be used for this to take effect.

Example
setFailedLoginThreshold (3)

saveDirectory ()

getLoginLoggingPolicy

Declaration
bool getLoginLoggingPolicy (bool type)

Operation

If Rational DOORS is keeping track of logins of the specified type, returns t rue; otherwise, returns false. If type is
true, returns the policy for successful logins; otherwise, returns the policy for login failures.

To set the logging policy, use the setLoginLoggingPolicy function.
Example
This example indicates whether Rational DOORS is keeping track of login failures.

getLoginLoggingPolicy (false)

setLoginLoggingPolicy

Declaration

void setLoginLoggingPolicy (bool type,
bool status)

Operation

Sets the logging policy for login events of the specified type. If status is true, logging of the specified type is enabled;
otherwise, it is disabled. If type is true, sets the policy for successful logins; otherwise, sets the policy for login failures.

To find out the current logging policy, use the getLoginLoggingPolicy function.
Example
This example causes Rational DOORS not to log successful logins.

setLoginLoggingPolicy (true, false)

setMinClientVersion

Declaration

string setMinClientVersion(string s)

DXL Reference Manual

225

Operation

Sets the minimum client version that can connect to the current database. The string argument must be of the format n. n,
n.n.norn.n.n.n,where each nis a decimal integer. The integer values represent Major version, Minor version, Service
Release and Patch number respectively. The Service Release and Patch numbers are optional, and default to zero.

This perm only operates if the current user has the Manage Database privilege, otherwise it returns an appropriate error
string. It also returns an error string if the string argument is not of the correct format, or represents a client version higher
than the current client.

getMinClientVersion

Declaration
string getMinClientVersion (void)

Operation

Returns a string representing the minimum client version that can connect to the current database, in the format n. n,
n.n.notn.n.n.n. The formatis explained in setMinClientVersion. If no minimum client version has been set
for the database, this perm returns a NULL string.

setMaxClientVersion

Declaration

string setMaxClientVersion (string s)

Operation

Sets the maximum client version that can connect to the current database. The string argument must be of the format n. n,
n.n.norn.n.n.n,where each nis a decimal integer. The integer values represent Major version, Minor version, Service
Release and Patch number respectively. The Service Release and Patch numbers are optional.

This perm only operates if the current user has the Manage Database privilege, otherwise it returns an appropriate error
string. It also returns an error string if the string argument is not of the correct format, or represents a client version lower
than the current client.

getMaxClientVersion

Declaration

string getMaxClientVersion (void)

Operation

Returns a string representing the maximum client version that can connect to the current database, in the format n. n,
n.n.notn.n.n.n. The formatis explained in setMinClientVersion. If no minimum client version has been set
for the database, this perm returns a null string.

DXL Reference Manual

226

doorsinfo

Declaration

string doorsInfo (int 1)
Operation
A new valid value for the integer argument is defined (infoServerVersion).

This returns the version of the database server to which the client is currently connected.

Example

string serverVersion = doorsInfo(infoServerVersion)

print "database server version is " serverVersion "\n"
addNotifyUser

Declaration

void addNotifyUser (User user)

Operation

Adds user to the list of users to be notified by e-mail of attempts to log in. If user does not have an e-mail address, no

notification takes place.

deleteNotifyUser

Declaration

void deleteNotifyUser (User user)

Operation

Deletes user from the list of users to be notified by e-mail of attempts to log in.

createPasswordDialog

Declaration
string createPasswordDialog (DB parent,

bool &completed)
Operation

Displays a dialog box containing password and password confirmation fields as well as OK and Cancel buttons. The parent
argument is needed for the Z-order of the elements.

If confirmation is successful, returns a null string; otherwise, returns an error message.

DXL Reference Manual

227

If the user clicks OK, sets completed to true. If the user clicks Cancel, sets completed to false. Rational DOORS
stores the entered password temporarily for the next user account created with the addUser function. It is not stored as
plain text, and is lost if Rational DOORS shuts down before a new account is created.

Example

See the section “Creating a user account example,” on page 230.

changePasswordDialog

Declaration

string changePasswordDialog (DB parent,
User user,
bool masquerade,
bool &completed)

Operation

Displays a dialog box containing password and password confirmation fields as well as OK and Cancel buttons. The
parent argument is needed for the Z-order of the elements.

If confirmation is successful, returns a null string; otherwise, returns an error message.

If the user clicks OK, sets completed to true. If the user clicks Cancel, sets completed to false. Rational DOORS
stores the entered password temporarily. It is not stored as plain text, and is lost if Rational DOORS shuts down before the
password is copied using the copyPassword function.

A user without the mayEditUserList power must confirm his existing password, otherwise the function returns an
error message. A user with this power is not prompted for an existing password, unless masqueradeis true.

Example

This example copies a new password to the user account for which it was created.
User u = find("John Smith")

bool completed

string s = changePasswordDialog(confirm, u,
false, completed)

if (completed && (null s)) {
copyPassword ()

}
saveUserRecord (u)

saveDirectory ()

DXL Reference Manual

228

confirmPasswordDialog

Declaration

bool confirmPasswordDialog (DB parent,
bool &completed)

Operation

Displays a dialog box containing a password confirmation field as well as OK and Cancel buttons. The title of the dialog
box is always Confirm password - DOORS. The parent argument is needed for the Z-order of the elements.

If confirmation is successful, returns t rue; otherwise, returns false.

If the user clicks OK, sets completed to true. If the user clicks Cancel, sets completed to false.

Example

bool bPasswordOK = false, bCompleted = false

// query user

bPasswordOK = confirmPasswordDialog (dbExplorer, bCompleted)
// check status

if (bCompleted == true)
{

print "Confirmed"

copyPassword

Declaration

bool copyPassword()

Operation

Copies the password created using the function to the account for which the password was created. Returns null on success
and an error message on failure.

Example

This example copies a new password to the user account for which it was created.

User u = find("John Smith")

bool completed

string s = changePasswordDialog (dbExplorer, u, false, completed)

if (completed && (null s)) {
copyPassword ()

DXL Reference Manual

229

getAdministratorName

Declaration

string getAdministratorName ()

Operation

Returns the name of the administrator for the Rational DOORS database.

sendEMailNotification

Declaration

{bool|string} sendEMailNotification(string fromDescription,
string targetAddress,
string subject,
string message)

string sendEMailNotification(string fromDescription,
Skip targetAddresses,
[, Skip ccAddresses]
[, Skip bccAddresses]
string subject,
string message)

Operation

Issues a notification e-mail to the specified address or addresses. The communication takes place using SMTP, and depends
on the appropriate Database Properties fields being correctly set up prior to its use (SMTP Mail Server and Mail Account).

The user can set the description of the sender, the subject matter, and message contents using fromDescription,
subject and message. If fromDescription isa null string, Rational DOORS defaults to a standard text:

DOORS Mail Server
The following standard text is sent in front of the specified message:

The following is a notification message from DOORS - please do not reply as it
was sent from an unattended mailbox.

The variant returning a boolean is for legacy use and returns true if the SMTP communication was successful; otherwise,
returns false. Others variants return an error string on failure.

DXL Reference Manual

230

sendEMailMessage

Declaration

{bool|string} sendEMailMessage (
string fromDescription,
string targetAddress,
string subject,
string message)

string sendEMailMessage (
string fromDescription,
Skip targetAddress,
[, Skip ccAddresses]
[, Skip bccAddresses]
string subject,
string message)

Operation

Performs the same function as sendEMailNotification, but without prepending text to the message.

Creating a user account example

This example creates a new user account named John Smith, having johns as its login name, with whatever password
is entered in the dialog box.

// prevent dxl timeout dialog

pragma runLim, O

// globals

bool g bPasswordOK = true

// user details

const string sUserName = "John Smith"
const string sUserLogin = "johns"

// only relevant if password is required

if (getDatabasePasswordRequired() == true) {
bool bConfirmCompleted = false
// query user

g bPasswordOK =
confirmPasswordDialog (dbExplorer,
bConfirmCompleted)

// check status

DXL Reference Manual

if (bConfirmCompleted == false) {
// adjust accordingly
g bPasswordOK = false
}
}

// check status

if (g _bPasswordOK == true) {
// only relevant if name doesn't exist
// as group or user

if (existsUser (sUserName) == false &&
existsGroup (sUserName) == false) {
bool bCreateCompleted = false
// query user

string sErrorMsg =
createPasswordDialog (dbExplorer,
bCreateCompleted)

// check status

if (sErrorMsg == null &&
bCreateCompleted == true) {
// add new user

if (addUser (sUserName, sUserLogin) ==

null) {
// save new user list
if (saveDirectory () == null) {
// refresh
if (loadDirectory() == null) {
// inform user
infoBox ("User '"sUserName"'
was added successfully.\n")
} else {

// warn user
warningBox ("Failed to load
user list.\n")

}

} else {
// warn user
warningBox ("Failed to save
user list.\n")
}
} else {
// warn user
warningBox ("Failed to add user
'"sUserName"'.\n")

DXL Reference Manual

231

232

} else {
// warn user
warningBox (sErrorMsqg)

}

} else {
// warn user
warningBox ("The name '"sUserName"'
already exists as either a DOORS User or
Group.\n")

Group and user manipulation

Group and user manipulation functions and for loops use the following DX data types: Group, User, GroupList,
UserList, and UserNotifyList. These types have the following permitted values:

Type Constant Meaning

GroupList groupList Provides access to all groups defined in the
database. This is the only constant of type
GroupList.

UserList userList Provides access to all users (with the

exception of the administrator account) who
have an account in the database. This is the
only constant of type UserList.

UserNotifyList userNotifyList Provides access to all users who must be
notified by e-mail of attempts to log in. This
is the only constant of type
UserNotifyList.

find

Declaration
User find()

{Group|User} find(string name)

Operation

The first form returns a handle of type User to the currently logged in user.

DXL Reference Manual

233

The second form returns a handle of type Group or type User for the group or user name. A call to this function where
name does not exist causes a DXL run-time etror. To check that a user or group exists, use the existsGroup,
existsUser functions.

findByID

Declaration

User findByID(string identifier)

Operation

Returns a handle of type User for the specified 1dentifier, or null if the user does not exist but the identifier is valid.
If the specified identifier is badly formed, a DXL run-time etror occurs.

You can extract the identifier for a user from a variable of type User with the identifier property (see “Group and
user properties,” on page 241).

existsGroup, existsUser

Declaration
bool existsGroup(string name)

bool existsUser (string name)

Operation

If the named group or user exists, returns true; otherwise, returns false.

loadUserRecord

Declaration

string loadUserRecord (User user)

Operation

Loads the details of user user from the database.
Example

User u = find("boss")

loadUserRecord (u)
string e = u.email

print e

DXL Reference Manual

234

ensureUserRecordLoaded

Declaration

string ensureUserRecordLoaded (User user)

Operation

If the user’s record for user has not already been loaded, calls the 1oadUserRecord function.

saveUserRecord

Declaration

string saveUserRecord (User user)

Operation

Saves the details of user user to the database.

Note: A saveDirectory () command should be used to commit the changes to the database

Example

User u = find("boss")
loadUserRecord (u)
string e = u.email

if (null e) {
u.email = "boss@work"

}
saveUserRecord (u)

saveDirectory ()

loadDirectory

Declaration

string loadDirectory ()

Operation

Loads the group and user list from the database. All changes made since the last load or save are lost. If the operation
succeeds, returns null; otherwise, returns an error message.

DXL Reference Manual

235

saveDirectory

Declaration

string saveDirectory ()

Operation

Saves all changes to groups, users, and login policies in the database. If the call fails, returns an error message.

Note: This perm places a temporary lock on the users directory. If used in a continuous manner, for example, repeatedly
in a for loop, this could cause conflicts for another user trying to login.

for user in database

Syntax

for user in userlList do {

}
where:

user is a variable of type User

If the database is configured to use an LDAP directory, use:

for user in userlist (“pattern”) do {

}
Operation

Assigns the variable user to be each successive non-administrator user in the database.

For LDAP, if the pattern specified is *, then the loop returns the entire set of users that are available in the LDAP
directory. This operation might require some time, depending on the number of users in the LDAP directory.

Example
This example prints a list of users in the database:
User user

for user in userList (“*”) do {
string uName = user.name
print uName "\n"

DXL Reference Manual

236

for group in database

Syntax

for group in groupList do {

}

where:

group is a variable of type Group

If the database is configured to use an LDAP directory, use:

for group in groupList (“pattern”) do {

}
Operation

Assigns the vatiable group to be each successive group in the database.

For LDAP, if the pattern specified is *, then the loop returns the entire set of groups that are available in the LDAP
directory. This operation might require some time, depending on the number of groups in the LDAP directory.

Example
This example prints a list of groups in the database:
Group group

for group in groupList ("*") do {
string gName = group.name
print gName "\n"

for user in group

Syntax

for user in group do {

where:
user is a vatiable of type User
group is a variable of type Group

DXL Reference Manual

237

Operation

Assigns the vatiable user to be each successive non-administrator user in the specified group.

Example

This example prints a list of users in group development:
User user

Group development = find("development")

for user in development do {
string uName = user.name
print uName "\n"

for group in IdapGroupsForUser

Declaration

for g in ldapGroupsForUser (u) do {

where:
g is a variable of type Group
u is a variable of type User
Operation

Iterate over all groups of which the user passed to the IdapGroupsForUser function is a member. Note that this
iterator is only effective when Rational DOORS is configured for LDAP, not for the Rational Directory Server.

Example
User u = find(“fred”)
Group g

for g in ldapGroupsforUser (u) do {

for user in notify list

Syntax

for user in userNotifyList do {

DXL Reference Manual

238

where:
user is a vatiable of type User

Operation

Assigns the variable user to be each successive user in the list of users to be notified by e-mail of login activity.

copyPassword

Declaration

string copyPassword()

Operation

This is the same as the existing copyPassword () perm. It performs an identical operation, transferring the shadow
password to the real password but instead of returning a boolean indicating success or failure, it returns NULL on success
and a message on failure. The existing perm can fail resulting in a reported error in the DXL output display if an exception
is thrown. The new perm will catch exceptions and pass the message back to the DXL code for it to display as a pop-up
dialog.

fullName

Declaration

UserElement fullName ()

Operation

This can be used to get the full name of the user.
Example
User u = find()

string name = u.fullName

mayEditDXL

Declaration

UserElement mayEditDXL ()
Operation

Indicates whether the specified user is able to edit and run DXT. programs.

Example
User u = find

bool useDXL = u.mayEditDXL

DXL Reference Manual

239

synergyUsername

Declaration

UserElement synergyUsername ()

Operation

This can be used to retrieve the user’s SYNERGY/Change user name.

This attribute value is only available when Rational DOORS is configured to use the Rational Directory Server.

This value is not writable; its value is set when the systemLoginName is set.

Example:

User u = find("Test")

string s = u.synergyUsername
User u = find("Test")
u.synergyUsername = "testuser"

//this generates an error

forename

Declaration

UserElement forename ()

Operation

This can be used to get or set the user’s forename.

This attribute value is only available when Rational DOORS is configured to use the Rational Directory Setver.

Setting this value has the side effect of setting the fullName of the user to the concatenation of forename and surname.
This is only relevant when configured to use the Rational Directory Server.

Example
User u = find("Test")

string s = u.forename

User u = find("Test")

u.forename = "Tom"

DXL Reference Manual

240

surname

Declaration

UserElement surname ()

Operation

This can be used to get or set the user’s surname.

This attribute value is only available when Rational DOORS is configured to use the Rational Directory Setver.

Setting this value has the side effect of setting the fullName of the user to the concatenation of forename and surname.
This is only relevant when configured to use the Rational Directory Server.

Example
User u = find("Test")

string s = u.surname

User u = find("Test")

u.surname = "Thumb"

Group and user management

Group and user management functions use the DXI. data types Group, User, and UserClass.

User class constants

Type UserClass can have one of the following values:

Constant Meaning
administrator User type administrator
standard User type standard
databaseManager User type database manager
projectManager User type project manager
custom User type custom

DXL Reference Manual

241

Group and user properties

Properties are defined for use with the . (dot) operator and a group or user handle to extract information from, or specify
information in a group or user record, as shown in the following syntax:

variable.property

where:
variable is a vatiable of type Group or User
property is one of the user or group properties

The following tables list the group properties and the information they extract or specify (for further details on specifying
information see the setGroup function):

String property Extracts

name name

Boolean property Extracts

Disabled whether the group is disabled

The following tables list the user properties and the information that they extract or specify.
Note: The string properties and Boolean properties in the following tables do not apply to the following DXL
statements. These statements only use one property, the Boolean property Disabled:
* for property in user account
* isAttribute(uset)
e delete(user property)
e get(user property)
* set(user property)

For further details on specifying information, see the setUser function.

String property Extracts

address postal address

email e-mail address

identifier identifier: a string containing a hexadecimal number, which is created

by Rational DOORS

description description

DXL Reference Manual

242

String property Extracts
name name
password password (write-only)

systemLoginName system login name (not Rational DOORS user name)

telephone telephone number

fullName full name

Boolean property Extracts

Disabled whether the account is disabled

emailCPUpdates whether the user of the CP system can be notified by
e-mail when the status of a proposal changes, for
example when it is accepted or rejected

mayArchive whether the user can archive and restore modules and

mayCreateTopLevelFolders

mayEditGroupList

mayEditUserList

mayManage

mayPartition

passwordChanged

passwordMayChange

mayUseCommandLinePassword

additionalAuthenticationR
equired

projects

whether the user can create folders at the root of the
database

whether the user can edit, create and delete groups

whether the user can edit, create, and delete user
accounts and groups

whether the user can manage the Rational DOORS
database

whether the user can transfer the editing rights for a
module to a satellite database (see the chapters on
partitions in Using Rational DOORS and
Managing Rational DOORS)

whether the password has been changed since the
account was created

whether the user is permitted to change the password

if database restrictions are enabled, whether the user
may use the command line password switch

whether the user is required to perform additional
when logging in (RDS only)

DXL Reference Manual

243

Integer property Extracts
passwordLifetime lifetime of password (0 means unlimited lifetime)
passwordMinimumLength minimum number of characters in password for this

user (non-negative integer)

Type UserClass property Extracts

class class of user; this can be one of the values in “User class
constants,” on page 240

for property in user account

Syntax

for Boolean property Disabled in user do {

}

where:

Boolean property Extracts

Disabled whether the user is disabled
Operation

Assigns Boolean property Disabled to each successive user.

isAttribute(user)

Declaration

bool isAttribute (User user, Boolean property Disabled)

Operation

Returns true if the specified user contains the Boolean property Disabled; otherwise, returns false.

isAttribute(user attribute)

Declaration

bool isAttribute (User user, string attribute)

DXL Reference Manual

244

Operation

Returns true if the specified user contains the string at t ribute; otherwise, returns false.
Example

User u = find("Test")

string attr = "key"

bool b = isAttribute (u, attr)

isAttribute(group attribute)

Declaration
bool isAttribute (Group group, string attribute)

Operation

Returns true if the specified group contains the string at t ribute; otherwise, returns false.
Example

Group g = find("Developers")

string attr = "key"

bool b = isAttribute(g, attr)

delete(user attribute)

Declaration

void delete (User user, string attribute)

Operation

Deletes the specified string at t ribute if found within user.

delete(group attribute)

Declaration

void delete (Group group, string attribute)

Operation

Deletes the specified string at tribute if found within group.

DXL Reference Manual

245

delete(user property)

Declaration

void delete (User user, Boolean property Disabled)

Operation
Deletes the Boolean property Disabled within user. You cannot delete propetties of other types.

This action takes effect after saveUserRecord has been called. It is then permanent and cannot be reversed.

get(user property)

Declaration

string get (User user, Boolean property Disabled)

Operation

Returns the value of the Boolean property Disabled within user. If the property does not exist, a DXL
run-time error occurs.

get(user attribute)

Declaration

string get (User user, string attribute)

Operation

Returns the value of the string at t ribute within user. If the property does not exist, a DXL run-time error occurs.

Example
User u = find(“Test”)
string attr = “key”

string val = get(u, attr)

print val

get(group attribute)

Declaration

string get (Group group, string attribute)

DXL Reference Manual

246

Operation

Returns the value of the string at t ribute within group. If the property does not exist, a DXL run-time error occurs.
Example

Group g = find(“Developers”)

string attr = “key”

string val = get(g, attr)

print val

set(user property)

Declaration

void set (User user, Boolean property Disabled, string value)

Operation

Updates the value of the Boolean property Disabled within user. If the property does not exist it is created.

set(user attribute)

Declaration

void set (User user, string attribute, string value)

Operation

Updates the value of the string attribute to the specified value. If the attribute does not exist it is created.
Example

User u = find(“Test”)

string attr = “key”

string val = “value”

set (u, attr, wval)

set(group attribute)

Declaration

void set (Group group, string attribute, string value)

DXL Reference Manual

247

Operation

Sets the string attribute to the specified value. If the attribute does not exist it is created.

Example
Group g = find(“Developers”)
string attr = “key”

string val = “value”

set (g, attr, val)

setGroup

Declaration

string setGroup (Group id,

property,
{stringl|bool} value)

Operation
Updates the value of the specified standard property (from the String property table) within the group id.

If successful, returns a null string; otherwise, returns an error message.

setUser

Declaration

string setUser (User user,

property,
{string|int|bool} value)

Operation
Updates the value of the specified standard property (from the String property table) within user.

If successful, returns a null string; otherwise, returns an error message.

addGroup

Declaration

string addGroup (string name)

Operation

Creates group name. If the operation is successful, returns a null string; otherwise, returns an error message.

DXL Reference Manual

248

deleteGroup

Declaration
string deleteGroup (Group group)

Operation
Deletes group group from the Rational DOORS database. It does not affect underlying usets.

This action takes effect after the user directory has been refreshed using the saveDirectory function. It is then
permanent and cannot be reversed.

If the operation is successful, returns a null string; otherwise, returns an error message.

addUser

Declaration
string addUser (string name,

string uid)

string addUser (string name,
string password
string uid)

Operation

The first form creates a user account with the specified name, and system login, uid. If the operation succeeds returns a
null string; otherwise, returns an error message. This function must be used after a call to the
createPasswordDialog function, so that the password is set to an initial value. The user must change the password
on first use. If there has been no previous call to the createPasswordDialog function, the password is set to a null

string.

The second form is only supported for compatibility with earlier releases. It is deprecated because passwords are passed as

plain text.

This action takes effect after the user directory has been refreshed using the saveDirectory function.

Example

See the section “Creating a user account example,” on page 230.

deleteUser

Declaration

string deleteUser (User user)

Operation

Deletes the user account for user from the Rational DOORS database. Appropriate e-mails are also issued to the same
people who are notified of unsuccessful logins.

DXL Reference Manual

249

This action takes effect after the user directory has been refreshed using the saveDirectory function. Itis then

permanent and cannot be reversed.

If the operation is successful, returns a null string; otherwise, returns an error message.

addMember

Declaration

void addMember (Group group,
User user)

Operation
Adds user user to group group.

This action takes effect after the user directory has been refreshed using the saveDirectory function.

deleteMember

Declaration

bool deleteMember (Group group,
User user)

Operation
Deletes user user from group group. If the operation succeeds, returns t rue; otherwise, returns false.

This action takes effect after the user directory has been refreshed using the saveDirectory function.

deleteAllMembers

Declaration
bool deleteAllMembers (Group group)
Operation

Deletes all users from group group.

This action takes effect after the user directory has been refreshed using the saveDirectory function.

member

Declaration

bool member (Group group,
User user)

DXL Reference Manual

250

Operation

If user useris a member of group group, returns t rue; otherwise returns false.

stringOf(user class)

Declaration

string stringOf (UserClass userClass)

Operation

Returns a string representation of the specified user class. This can be one of the following values:
"Administrator"

"Standard"

"Database Manager"

"Project Manager"

"Custom"

LDAP

savelLdapConfig()

Declaration

string savelLdapConfig ()

Operation

Save the LDAP configuration to the database. Returns empty string on success, error message on failure.

loadLdapConfig()

Declaration
string loadLdapConfig ()

Operation

Load the LDAP configuration from the database. Returns empty string on success, error message on failure.

DXL Reference Manual

251

getUseldap()

Declaration
bool getUseldap ()

Operation

Gets the value of the flag which determines if we are using LDAP for storage of user and group information.

setUselLdap()

Declaration
string setUseldap (bool usingLdap)

Operation

Sets the value of the flag which determines if we are using LDAP for storage of user and group information. Only the
administrator can set this value. Returns empty string on success, etror message on failure.

updateUserList()

Declaration

string updateUserList ()

Operation

Update the Rational DOORS user list from the LDAP user list. Creates standard users for all the users permitted by LDAP
if they do not already exist in the Rational DOORS database, and updates user name and system login name for existing

users.

Note: This operation can take a long time, particularly if no group of Rational DOORS users has been specified (see
setDoorsUserGroupDN).

updateGroupList()

Declaration
string updateGroupList ()

Operation

Update the Rational DOORS group list from the LDAP group list. Creates Rational DOORS groups for all the groups
permitted by LDAP if they do not already exist in the Rational DOORS database, and updates group name for existing

groups.

Note: This operation can take a long time, particularly if no group of Rational DOORS groups has been specified (see
setDoorsGroupGroupDN).

DXL Reference Manual

252 ‘

LDAP Configuration

findUserRDNFromName

Declaration

string findUserRDNFromName (string name, bool &unique, string &uid)

Operation

Search for name in the LDAP directory, in the attribute specified by name for Rational DOORS user names, in the
Rational DOORS user subtree.

If found, return the distinguished name of the entry, relative to the Rational DOORS user root. Also sets the unique flag
true if only one matching entry was found, and fills in the uid string with the system login name obtained from the
matching entry. If not found, returns NULL. Only the administrator can run this function.

findUserRDNFromLoginName

Declaration

string findUserRDNFromLoginName (string uid, bool &unique, string &name)

Operation
Search for uid in the LDAP directory, in the attribute specified for system login names, in the Rational DOORS user

subtree.

If found, return the distinguished name of the entry, relative to the Rational DOORS user root. Also sets the unique flag
true if only one matching entry was found, and fills in the name string with the Rational DOORS user name obtained
from the matching entry. If not found, returns NULL. Only the administrator can run this function.

findGroupRDNFromName

Declaration

string findGroupRDNFromName (string name, bool &unique)

Operation

Search for name in the LDAP directory, in the attribute specified for Rational DOORS group names, in the Rational
DOORS group subtree.

If found, return the distinguished name of the entry, relative to the Rational DOORS group root. Also sets the unique flag
true if only one matching entry was found. If not found, returns NULL. Only the administrator can run this function.

DXL Reference Manual

253

findUserInfoFromDN

Declaration

string findUserInfoFromDN (string dn, string &name, string &uid)
Operation

Search for an entry with distinguished name dn in the LDAP directory.

If found, fills in the name and uid with the Rational DOORS user name and system login name obtained from the matching
entry. Returns NULL. Only the administrator can run this function.

checkConnect

Declaration

string checkConnect ()

Operation

Check the cutrent LDAP configuration by attempting to connect to the specified server/port as the user specified by
Rational DOORS bind dn with the Rational DOORS bind password. Returns NULL on success, error message on failure.

checkDN

Declaration

string checkDN (string dn)

Operation

Check that the given dn is a valid entry in the directory specified by the current LDAP configuration. This can be run to
check that the user root, group root, user group dn, and group group dn have been set to existing values. Only the
administrator can run this function.

Example

LdapItem item

for item in ldapGroupLlist do
{

print item.name "\n"
print item.dn "\n"

print item.uid "\n"

for item in ldapUserList do

DXL Reference Manual

254

print item.name "\n"
print item.dn "\n"

print item.uid "\n"

LDAP server information

getLdapServerName

Declaration

string getLdapServerName ()

Operation
Gets the name of the LDAP server.

setLdapServerName(string)

Declaration

string setLdapServerName (string name)

Operation

Sets the name of the LDAP server. Only the administrator can set this value. Returns empty string on success, error
message on failure.

getPortNo

Declaration
int getPortNo ()

Operation

Gets the port number of the server used for storage of user and group information.

setPortNo

Declaration

string setPortNo (int portNo)

DXL Reference Manual

255

Operation

Sets the port number of the server used for storage of user and group information. Only the administrator can set this value.

Returns empty string on success, error message on failure.

getDoorsBindNameDN

Declaration

string getDoorsBindNameDN ()

Operation

Gets the dn of the user we use to bind to the LDAP server.

setDoorsBindNameDN

Declaration

string setDoorsBindNameDN (string name)
Operation
Sets the dn of the user we use to bind to the LDAP server. Only the administrator can set this value.

Returns empty string on success, error message on failure.

setDoorsBindPassword

Declaration

string setDoorsBindPassword(string pass)

Operation

Sets the password we use to bind to the LDAP server. Only the administrator can set this value.

Returns empty string on success, error message on failure.

Note: Thereis no getDoorsBindPassword as DXL does not need to know this.

setDoorsBindPasswordDB

Declaration

string setDoorsBindPasswordDB (DB parentWindow)

Operation

This presents the user with a password dialog box. If the user enters the same valid password in both fields of the dialog
box, the setDoorsBindPassword () functionality is executed.

DXL Reference Manual

256

This returns null on success, and an error string on failure (either if the user does not enter the same valid password in both
fields of the dialog box, or if the setting of the password option failed).

getDoorsUserRoot

Declaration

string getDoorsUserRoot ()

Operation

Gets the identifier of the directory subtree used for storage of user information.

setDoorsUserRoot

Declaration
string setDoorsUserRoot (string ident)

Operation

Sets the identifier of the directory subtree used to search the LDAP server for users. Only the administrator can set this

value. Returns empty string on success, etror message on failure.

getDoorsGroupRoot

Declaration

string getDoorsGroupRoot ()

Operation

Gets the identifier of the directory subtree used for storage of group information.

setDoorsGroupRoot

Declaration

string setDoorsGroupRoot (string ident)

Operation

Sets the identifier of the directory subtree used to search the LDAP server for groups. Only the administrator can set this
value. Returns empty string on success, error message on failure.

DXL Reference Manual

257

getDoorsUserGroupDN

Declaration

string getDoorsUserGroupDN ()

Operation
Gets the dn of the LDAP group used to specify permitted Rational DOORS users.

setDoorsUserGroupDN

Declaration
string setDoorsUserGroupDN (string dn)

Operation

Sets the dn of the LDAP group used to specify permitted Rational DOORS users. Only the administrator can set this value.
Returns empty string on success, error message on failure.

getDoorsGroupGroupDN

Declaration

string getDoorsGroupGroupDN ()

Operation
Gets the dn of the LDAP group used to specify permitted Rational DOORS groups.

setDoorsGroupGroupDN

Declaration
string setDoorsGroupGroupDN ()

Operation

Sets the dn of the LDAP group used to specify permitted Rational DOORS groups. Only the administrator can set this
value. Returns empty string on success, error message on failure.

DXL Reference Manual

258 ‘

LDAP data configuration

getDoorsUsernameAttribute

Declaration

string getDoorsUsernameAttribute ()

Operation
Gets the name of the LDAP attribute to be used for a Rational DOORS user name.

setDoorsUsernameAttribute

Declaration
string setDoorsUsernameAttribute (string name)

Operation

Sets the name of the LDAP attribute to be used for a Rational DOORS uset name. Only the administrator can set this

value. Returns empty string on success, etror message on failure.

getLoginNameAttribute

Declaration

string getLoginNameAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the system login name.

setLoginNameAttribute

Declaration

string setLoginNameAttribute (string name)

Operation

Sets the name of the LDAP attribute to be used for the system login name. Only the administrator can set this value.
Returns empty string on success, error message on failure.

DXL Reference Manual

259

getEmailAttribute

Declaration
string getEmailAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the uset’s email address.

setEmailAttribute

Declaration

string setEmailAttribute (string email)

Operation

Sets the name of the LDAP attribute to be used for the user’s email address. Only the administrator can set this value.

Returns empty string on success, error message on failure.

getDescriptionAttribute

Declaration

string getDescriptionAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the user’s description.

setDescriptionAttribute

Declaration

string setDescriptionAttribute (string name)

Operation

Sets the name of the LDAP attribute to be used for the user’s description. Only the administrator can set this value. Returns

empty string on success, error message on failure.

getTelephoneAttribute

Declaration
string getTelephoneAttribute ()

DXL Reference Manual

260

Operation

Gets the name of the LDAP attribute to be used for the users’s telephone number.

setTelephoneAttribute

Declaration

string setTelephoneAttribute (string phone)

Operation

Sets the name of the LDAP attribute to be used for the users’s telephone number. Only the administrator can set this value.

Returns empty string on success, error message on failure.

getAddressAttribute

Declaration
string getAddressAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the users’s address.

setAddressAttribute

Declaration

string setAddressAttribute (string address)

Operation

Sets the name of the LDAP attribute to be used for the users’s address. Only the administrator can set this value. Returns

empty string on success, error message on failure.

getGroupObjectClass

Declaration
string getGroupObjectClass ()

Operation

Gets the name of the LDAP object class to be used to identify groups. Typically this value will be
groupOfUniqueNames.

DXL Reference Manual

261

setGroupObjectClass

Declaration
string setGroupObjectClass (string class)

Operation

Sets the name of the LDAP object class to be used to identify groups. Only the administrator can set this value. Returns

empty string on success, error message on failure.

getGroupMemberAttribute

Declaration
string getGroupMemberAttribute ()

Operation

Gets the name of the LDAP attribute to be used to identify group members. Typically this value will be uniqueMember.

setGroupMemberAttribute

Declaration

string setGroupMemberAttribute (string name)

Operation

Sets the name of the LDAP attribute to be used to identify group members. Only the administrator can set this value.
Returns empty string on success, error message on failure.

getGroupNameAttribute

Declaration
string getGroupNameAttribute ()

Operation

Gets the name of the LDAP attribute to be used for a group’s name. Typically this value will be cn.

setGroupNameAttribute

Declaration
string setGroupNameAttribute (string group)

DXL Reference Manual

262

Operation

Sets the name of the LDAP attribute to be used for a group’s name. Only the administrator can set this value. Returns

empty string on success, etror message on failure.

Group and user properties

Declaration
string ldapRDN

If we have auser u, print u.ldapRDN prints the user’s LDAP relative distinguished name, which may be empty if
LDAP is not being used.

The administrator can set a user’s LDAP rdn with

u.ldapRDN = new value.

string utf8(ansiString)

Declaration

string utf8(string ansiString)

Operation

This returns the UTF-8 format conversion of an ANSI string argument ansiString. LDAP servers use UTF-8
encoding, whereas Rational DOORS data is stored in ANSI format. This affects the encoding of extended characters, such
as accented letters, which are encoded in UTF-8 as 2-byte sequences.

string ansi(utf8String)

Declaration

string ansi(string utf8String)

Operation

This returns the ANSI format conversion of a UTF-8 string argument ut £8String. LDAP servers use UTF-8 encoding,
whereas Rational DOORS data is stored in ANSI format. This affects the encoding of extended characters, such as
accented letters, which are encoded in UTF-8 as 2-byte sequences.

Rational Directory Server

After using any of the following functions to modify the Rational Directory Server, use the saveL.dapConfig() function to
save the modifications.

DXL Reference Manual

263

getUseTelelogicDirectory

Declaration
bool getUseTelelogicDirectory ()

Operation

Returns a flag indicating whether Rational Directory Server support is enabled.

setUseTelelogicDirectory

Declaration
string setUseTelelogicDirectory (bool b)

Operation
Enables or disables Rational Directory Server support.
Returns an error string if the current user is not the administrator.

Returns an error message if the argument is t rue and ordinary LDAP is already enabled.

getTDServerName

Declaration

string getTDServerName ()

Operation

Returns the Rational Directory Server name.

setTDServerName

Declaration

string setTDServerName (string s)

Operation
Sets the Rational Directory Server name.

Returns an error string if the current user is not the administrator.

DXL Reference Manual

264

getTDPortNo

Declaration
int getTDPortNo ()

Operation

Returns the Rational Directory Server port number.

setTDPortNo

Declaration

string setTDPortNo (int 1)
Operation

Sets the Rational Directory Server port number.

Returns an error string if the current user is not the administrator.

getTDBindName

Declaration
string getTDBindName ()

Operation

Returns the Rational Directory Server administrator bind (login) name.

setTDBindName

Declaration

string setTDBindName (string s)

Operation
Sets the Rational Directory Server administrator bind (login) name.

Returns an error string if the current user is not the administrator.

setTDBindPassword

Declaration

string setTDBindPassword (string s)

DXL Reference Manual

265

Operation
Sets the Rational Directory Server administrator bind (login) password.

Returns an error string if the current user is not the administrator.

setTDBindPassword

Declaration
string setTDBindPassword (DB bind pass)

Operation

Sets the Rational Directory Server administrator bind (login) password from the specified database.

getTDUseDirectoryPasswordPolicy

Declaration

bool getTDUseDirectoryPasswordPolicy ()

Operation

Returns a flag indicating whether the directory should handle all password policy issues.

setTDUseDirectoryPasswordPolicy

Declaration
string setTDUseDirectoryPasswordPolicy(bool TD dir)

Operation
Enables or disables support for the directory password policy.

Returns an error string if the current user is not the administrator.

getAdditionalAuthenticationEnabled

Declaration
bool getAdditionalAuthenticationEnabled()

Operation

Returns true if enhanced security users need to perform additional authentication during login. Only relevant when

authentication is being controlled via RDS.

DXL Reference Manual

266

getAdditionalAuthenticationPrompt

Declaration
string getAdditionalAuthenticationPrompt ()

Operation

Returns the label under which additional authentication is requested, if enhanced security is enabled, for example the label
for the second “password” field. Only relevant when authentication is being controlled via RDS.

getSystemLoginConformityRequired

Declaration
bool getSystemLoginConformityRequired ()

Operation

Returns true if enhanced security users have there system login verified when logging in. Only relevant when
authentication is being controlled via RDS.

getCommandLinePasswordDisabled

Declaration

bool getCommandLinePasswordDisabled ()

Operation

Return true if the =P command line password argument is disabled by default.

setCommandLinePasswordDisabled

Declaration

string getCommandLinePasswordDisabled (bool)

Operation

Sets whether the —P command line password argument is disabled by default. Supplying t rue disables the option by
default.

DXL Reference Manual

267

Chapter 16

Rational DOORS hierarchy

This chapter describes features that are relevant to items, folders, and projects within the Rational DOORS hierarchy.
Features specific to modules and objects are described in the following chapters:

* About the Rational DOORS hierarchy
* Item access controls

e Hierarchy clipboard

* Hierarchy information

* Hierarchy manipulation

e Items

* Folders

e Projects

* Looping within projects

About the Rational DOORS hierarchy

Within a Rational DOORS database there are items, which can be folders, projects, and modules. A project is a special
type of folder. The database root is also a folder.

In DXL, the Rational DOORS hierarchy is represented by the data types Item, Folder, Project, and a call to the
module function. Open modules are also represented by the Module data type.

Functions that operate on items have equivalents for folders, projects and modules.

Modules and folders are in general referenced by their unqualified names (without paths). However, DXL scripts can
specify fully qualified names, which are distinguished by the inclusion of one or more slash (/) characters. These names can
be either relative to the current folder, for example:

../folder/module

or absolute (with a leading slash), for example:

/ folder/module

Create functions fail if an invalid (non-existent) path is specified.

Functions common to all hierarchy items are described in “Hierarchy clipboard,” on page 269, “Hierarchy information,” on
page 272, and “Hierarchy manipulation,” on page 276.

Functions specific to items of type Item are described in “Items,” on page 278.
Functions specific to folders are described in “Folders,” on page 281.

Functions specific to projects are described in “Projects,” on page 284.

DXL Reference Manual

268

Functions specific to modules are described in “Modules,” on page 291.

Item access controls

This section describes functions that report on access rights for items.

canCreate(item)

Declaration

bool canCreate ({Item i|Folder f})

Operation

Returns true if the current Rational DOORS user has create access to the item or folder specified by the argument.
Otherwise, returns false.

canControl(item)

Declaration
bool canControl ({Item i|Folder f})

Operation

Returns true if the current Rational DOORS user can change the access controls on the item or folder specified by the
argument. Otherwise, returns false.

canRead(item)

Declaration
bool canRead({Item i|Folder f})

Operation

Returns true if the current Rational DOORS user can read the item or folder specified by the argument. Otherwise,
returns false.

canModify(item)

Declaration
bool canModify({Item i|Folder f})

DXL Reference Manual

269

Operation

Returns true if the current Rational DOORS user can modify the item or folder specified by the argument. Otherwise,
returns false.

canDelete(item)

Declaration
bool canDelete({Item i|Folder f})

Operation

Returns true if the current Rational DOORS user can delete the item or folder specified by the argument. Otherwise,

returns false.

Hierarchy clipboard

This section defines functions for the hierarchy clipboard. Passing a null argument of type Item, Folder, or
Project to any function, or a null string to a call to the module function results in a run-time DXL error. The term item
means a variable of type Item, type Folder, or type Project, or a call to the module function.

clipCut

Declaration
string clipCut (Item 1)

Operation

Places a write lock on the item specified by the argument, and adds it to the clipboard as part of a set of cut items. If the
write lock fails, or if the user does not have delete access to the item and its descendants (if any), the call to c1ipCut fails.

If the previous operation was not a cut, this function first clears the clipboard. If the item is deleted, returns an error

message.

No other user can open the cut item until it has been pasted or the cut has been undone.

clipCopy

Declaration
string clipCopy(Item 1)

DXL Reference Manual

270

Operation

Places a share lock on the item specified by the atgument, and adds it to the clipboard as part of a set of copied items. If the
share lock fails, or if the user does not have read access to the item, the call to c1ipCopy fails. Any descendants of the
item to which the user does not have read access are not included as part of the set of items placed on the clipboard.

If the previous operation was a paste, this function first clears the clipboard. If the previous operation was a cut, this
function first performs an undo. If the item is deleted, returns an error message.

No other user can move, delete or rename the item until it has been pasted or the copy has been undone.

clipClear

Declaration
string clipClear ([bool forcel)

Operation

If the last operation was not a cut, unlocks and clears the clipboard contents. If the last operation was a cut, the result
depends on the value of force as follows:

false the call fails

true purges the contents of the clipboard from the database.

If you omit force, its value is assumed to be false.

clipPaste

Declaration
string clipPaste (Folder folderRef)

Operation

Pastes the contents of the clipboatd to folderRef. If the user does not have create access to the destination, the call to
clipPaste fails. If folderRef is deleted, returns an error message.

If the previous operation was a cut, moves the contents of the clipboard from their original location, and places a share lock
on them. Otherwise, unlocks the originals, and makes copies of them in folderRef. In this case, any projects have Copy

of in front of their names, because duplicate project names are not allowed. If this still results in duplicate names, Copy n

of is used, where n is the lowest number >= 2 that prevents duplication. This function uses the same naming convention
to avoid duplication when copying items into their original folder.

The items pasted from the clipboard remain share locked until the clipboard is cleared. This is done automatically when the
client closes down, or when the user opens any module in the clipboard for exclusive edit, or deletes, renames, or moves any
item in the clipboard.

DXL Reference Manual

271

clipUndo

Declaration
string clipUndo ({Item 1)

Operation

If the last operation was a cut or copy, unlocks and clears the clipboard contents.

clipLastOp

Declaration
int clipLastOp ()
Operation

Returns an integer indicating the last operation performed on the hierarchy clipboard. The returned value can be of: Cut,
Copy, Clear, Paste, Undo.

itemClipboardlsEmpty

Declaration
bool itemClipboardIsEmpty ()

Operation

If there are no items in the hierarchy clipboard, returns true; otherwise, returns false.

inClipboard

Declaration
bool inClipboard({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

If the item specified by the argument is in the hierarchy clipboard, returns t rue; otherwise, returns false.

DXL Reference Manual

272 ‘

Hierarchy information

This section defines functions that provide information about items, folders, projects, or modules. The term e means a
variable of type Item, type Folder, type Project or type ModName . You can also reference an open module using
the data type Module. Passing a null argument of type Item, Folder, Project, Module or ModName _ to any
function results in a run-time DXL error.

folder, project, module(state)

Declaration
bool folder (string folderName)
bool project(string projectName)

bool module (string moduleName)

Operation

Returns true if the argument is the name of a folder, project, or module to which the current user has read access;
otherwise, returns false.

Because a project is a special class of folder, the folder function returns t rue for projects as well as other folders.

description

Declaration
string description({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the description of the item specified by the argument.

Example

print description current Module

name(item)

Declaration
string name ({Item i|Folder f|Project p|Module m|ModName modRer})

Operation

Returns the unqualified name of the item specified by the argument.

Example

print name current Module

DXL Reference Manual

273

fullName(item)

Declaration
string fullName ({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the full name of the item specified by the argument, including the path from the nearest ancestor project, or if not

inside a project, from the root folder.

path(item)

Declaration
string path({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the full name of the parent of the item specified by the argument from the nearest ancestor project, or if not inside

a project, from the root folder.

getParentFolder(item)

Declaration
Folder getParentFolder ({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the folder containing the item specified by the argument. If the argument is the root folder, returns null.

getParentProject(item)

Declaration
Project getParentProject ({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the nearest ancestor project for the item specified by the argument, or null if there is none. If the item is a project,
this function does not return the project itself, but the nearest one above (or null if there is none).

isDeleted(item)

Declaration
bool isDeleted({Item i|Folder f|Project p|ModName modRef})

DXL Reference Manual

274

Operation

If the item specified by the argument is marked as deleted ot soft deleted, or if it does not exist, or if the user does not have
read access to it, returns t rue; otherwise, returns false.

setShowDeletedltems(bool)

Declaration
void setShowDeletedItems (bool show)

Operation

If bool show is set to true, deleted items will be visible in the Database Explorer. Setting show to f£alse hides all
deleted items.

type
Declaration
string type({Item i|Folder f|Module m|ModName modRef})
Operation
Returns the type of the item specified by the argument as a string. Possible values are shown in the following table.
Return value Item Folder Module
"Folder" y y n
"Project" y y n
"Formal" y n y
"Link" y n y
"Descriptive" y n y
Example
print type(item "/")
uniquelD

Declaration
string uniquelID({Item i|Folder f|Project p|ModName modRef|Module m})

DXL Reference Manual

275

Operation

Returns a unique identifier for the specified item, which lasts for the lifetime of the item, and is never reused. The unique
identifier does not change when the item is moved or renamed. If the item is copied, the copy has a different identifier.

A call to this function where 1 does not exist causes 2 DXL run-time etrot.

qualifiedUniquelD

Declaration
string qualifiedUniqueID({Item i|Folder f|Project p|ModName name|Module m})

Operation

Returns a representation of a reference to the specified Item, Folder, Project, Module or ModName_, which
uniquely identifies that object amongst databases.

Provided that supported mechanisms for the creation of Rational DOORS databases atre used, these unique identifiers can
be treated as globally unique; no two objects in any two databases will have the same qualifiedUniquelD.

See also uniquelD, which returns an unqualified representation of a reference.

getReference

Declaration

string getReference (Item referrer, Item referee)

Operation

Returns a reference to the referee from the referrer. This reference is invatiant under archive/restore (both inter-database
and intra-database) and copy/paste. Such a reference is to be used in preference to the referee’s index, unless the reference
is intended to be variant under such operations.

itemFromReference

Declaration

Item itemFromReference (Item referrer, string ref)

Operation

Returns the item to which ref refers from the specified referrer. ref must be a string that was obtained using the
getReference () perm. If the reference cannot be resolved, the returned item will satisfy null.

Example
Make a reference from the current module to an item named “a”

Item i = item fullName current Module

Item j = item "a"

DXL Reference Manual

276

// rj is a reference to j from i

string rj = getReference (i, 7j)

print rj "\n"

This reference will never change when i and j are moved, copied (together), archived, and restored (together).

Copyiand j to getii and jj
Item j = itemFromReference (i, rj) // get item that rj refers
Item jj = itemFromReference (ii, rj) // get item that rj refers

Typically these would be used when generating traceability. The DXL that generates the layout DXL or attribute DXL
would call getReference and then insert the returned value into the layout DXL or attribute DXL code as the value
passed to itemFromReference ().

Hierarchy manipulation

This section defines functions for item manipulation. All creation functions are specific to the type of item being created,
but you can delete, undelete, purge, move, and rename items of all types using the Item handle. The term item means a
variable of type Item, type Folder, type Project or type ModName . You can also reference an open module using
the data type Module. Passing a null argument of type Item, Folder, Project, Module or ModName to any
function results in a run-time DXL error.

delete(item)

Declaration
string delete({Item i|Folder f|Project p})

string delete (ModName &modRef
[,bool hardDelete])

bool delete (ModName &modRefr)

Operation

Marks the item specified by the argument as deleted. If the item is already marked as deleted, or if the user does not have
delete access to it, the call fails.

The first and second forms return a null string on success; otherwise, an error message.

In the second form, if hardDelete is set to false, the module is not purged. If hardDelete is true or missing
and if the module was soft-deleted, the module is purged. If the module was not soft-deleted, the function returns an error
message. If the operation succeeds and the module is purged, the function also sets the ModName argument to null.

DXL Reference Manual

277

The third form is retained for compatibility with earlier releases. It returns t rue on success; otherwise, false. This is
equivalent to hardDelete (module) (the module need not be soft deleted). If the operation succeeds, also sets the
ModName argument to null.

For a folder or project, the user must also have delete access to all the undeleted folders, projects, and modules in it.

undelete(item)

Declaration
string undelete({Item i|Folder f|Project p|ModName modRef})

bool undelete (ModName modRef)

Operation

Marks the item specified by the argument as undeleted. If the item is not marked as deleted, or if the user does not have
delete access to the item, the call fails.

The first form returns a null string on success; otherwise, an error message.
The second form is retained for compatibility with earlier releases. It returns true on success; otherwise, false.

For a folder or project, this function also marks as undeleted all folders, projects, and modules in it, to which the user has

delete access.

Example

undelete item "my folder"

purge(item)

Declaration
string purge ({Item &i|Folder &f|Project &p|ModName &modRef})

bool purge (ModName &modRef)

Operation

Purges the item specified by the argument from the database. If the operation succeeds, sets the argument to null. If the
item is not marked as deleted, ot if the user does not have delete access to the item, the call fails.

The first form returns a null string on success; otherwise, an error message.
The second form is retained for compatibility with earlier releases. It returns true on success; otherwise, false.
For a folder or project, the user must also have delete access to all the undeleted folders, projects, and modules in it.

For aModName argument, the function deletes all incoming and outgoing links before purging the module.

Example
purge item "my folder"

or

DXL Reference Manual

278

Item i = item "my folder"
purge i

move(item)
Declaration

string move ({Item i|Folder f|Project p|ModName modRef}, Folder destination)

Operation

Moves the item specified by the first argument to folder destination. The folder can be any folder except the database

root.
If the user does not have delete access to the item, or create access to the destination folder, the call fails.

If the operation succeeds, returns a null string; otherwise, returns a string describing the error.

Example

move (item "My Module", folder "/new projects")

rename(item)

Declaration

string rename ({Item i|Folder f|Project
plModName modRef},
string name,
string description)

bool rename (ModName modRefr)

Operation

Renames the item specified by the first argument to name and associates it with description. The name argument
must be an unqualified name. If the user does not have modify access to the item, the call fails.

The first form returns a null string on success; otherwise, an error message.

The second form is retained for compatibility with earlier releases. It returns true on success; otherwise, false.

Example

rename (folder "my folder", "public", "for review")

ltems

This section defines functions and for loops for items, which make use of the Ttem data type. Passing a null argument
of type ITtem to any function results in a run-time DXL etror.

DXL Reference Manual

279

See also the functions in “Hierarchy clipboard,” on page 269, “Hierarchy information,” on page 272, and “Hierarchy
manipulation,” on page 270.

item(handle)

Declaration

Item item(string itemName)

Operation

If itemName is the name of an item to which the current user has read access, returns a handle of type I tem; otherwise,
returns null.

itemFromID(handle)

Declaration

Item itemFromID (string uniquelD)

Operation

If uniqueIDis the ID of an item to which the current user has read access, returns a handle of type I tem; otherwise,
returns nul 1.

for item in folder

Syntax
for itemRef in folder do {
}
where:
itemRef is a vatiable of type Item
folder is a variable of type Folder
Operation

Assigns 1temRef to be each successive undeleted item (for which the user has read access) in folder. Items in
sub-folders are not included.

Example
Item i

for 1 in current Folder do {
print (name i) "\n"

DXL Reference Manual

280

for all items in folder

Syntax

for itemRef in all folder do {

}

where:
itemRef is a vatiable of type Item
folder is a variable of type Folder
Operation

Assigns 1 temRef to be each successive item (for which the user has read access) in folder, including deleted items.
Items in sub-folders are not included.

Example
Folder f = current

Item itemRef

for itemRef in f do {

print fullName (itemRef) "\n"

for all items in project

Syntax

for itemRef in project do {

}

where:
itemRef is a variable of type ITtem
project is a variable of type Project
Operation

Assigns 1 temRef to be each successive undeleted item (for which the user has read access) in project, looping
recutsively through contained folders and projects.

DXL Reference Manual

281

Example
Item itemRef

for itemRef in current Project do
print name (itemRef) "\n"

Folders

'This section defines functions for folders.

See also the functions in “Hierarchy clipboard,” on page 269, “Hierarchy information,” on page 272, and “Hierarchy
manipulation,” on page 270.

Setting current folder

The assignment operator = can be used as shown in the following syntax:
current = Folder folder

Makes folder the current folder, provided the user has read access to the folder. See also, the current (folder)
function.

To set the current folder to the database root, use:
current = folder "/"

For large DXL programs, when you set the current folder, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrentFolder
becomes
(current FolderRef) = newCurrentFolder

Note that this cast only works for assignments to current. It is not useful for comparisons or getting the value of the current
folder.

current(folder)

Declaration

Folder current ()

Operation
Returns a handle on the current folder.
The current folder can be a project.

The current folder has two important implications:

DXL Reference Manual

282

* When you specify an item name, it is interpreted relative to the current folder.

* When you set the current folder using the assignment operator, you lock that folder and its ancestors, so that it cannot
be renamed, deleted or moved.

The project or folder that is opened in the Database Explorer is similarly locked. If you open a DXL window or run
another DXL script, that has its own current folder. The current folder for the DXL window is initially the current
folder of its patent.

If all folders are closed, the database root becomes the current folder.

Example

Folder f = current

folder(handle)

Declaration
Folder folder (string folderName)

Folder folder (Item itemRef)

Operation

If the argument specifies a folder to which the current user has read access, returns a handle of type Folder; otherwise,
returns null.

The string "/" identifies the database root.
Example
This example sets the current folder to the database root:

current = folder "/"

convertProjectToFolder

Declaration
string convertProjectToFolder (Project projectRef, Folder &folderRef)

Operation

Converts the project projectRef to a folder folderRef. If the operation succeeds, sets projectRef tonull,
makes the folder argument valid, and returns a null string; otherwise, returns an error message. If the user does not have
control access to the project or the create projects power (through mayCreateTopLevelFolders), the call fails.

Example

Project p = project "/Construction Project"
Folder £

string s = convertProjectToFolder (p, f)

DXL Reference Manual

283

if (null s)

print "Converted project " name(f) "to folder."
else
print "Error: " s

convertFolderToProject

Declaration

string
convertFolderToProject (Folder folderRef,
Project &projectRef)

Operation

Converts the folder folderRef to a project projectRef. If the operation succeeds, sets folderRef to null,
makes the project argument valid, and returns a null string; otherwise, returns an error message. If the user does not have
control access to the folder or the create projects power (through mayCreateTopLevelFolders), the call fails.

Example
Folder f = folder "/Construction Project/test records"
Project p
string s = convertFolderToProject(f, p)
if (null s)
print "Converted folder " name(p) "to project."
else
print "Error: " s

create(folder)

Declaration

Folder create(string name,
string description)

string create (string name, description desc, Folderé& f)

Operation

Creates a folder with the given name and description. The name argument can be an absolute or relative name, and
may include the path. If the user does not have create access to the patrent folder, the call fails.

The second form of the perm performs the same function as the first, but returns any error message, and passes the created
folder back via the last argument.

DXL Reference Manual

284

closeFolder

Declaration

string closeFolder ()

Operation

Changes the current folder to refer to the parent of the current folder. If the operation succeeds returns a null string;
otherwise, returns a string describing the error.

Example

closeFolder ()

Projects

This section defines operators, functions and for loops for projects, which make use of the Project data type. Passing a
null argument of type Project to any function results in a run-time DXL error.

See also the functions in “Hierarchy clipboard,” on page 269, “Hierarchy information,” on page 272, and “Hierarchy
manipulation,” on page 270.

Setting current project

The assignment operator = can be used as shown in the following syntax:
current = Project project

Makes project the current folder, and the current project, provided the user has read access to the folder. See also, the
current (project) function.

If the current folder is a project, it is also the current project. If the cutrent folder is not a project, the current project is the
nearest project containing the current folder. If the current folder is not contained in a project, the current project is null.

For large DXL programs, when you set the current project, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrentProject
becomes
(current FolderRef) = newCurrentProject

Note that this cast only works for assignments to current. It is not useful for comparisons or getting the value of the current
project.

Example

current = project "/My Project"

DXL Reference Manual

285

current(project)

Declaration

Project current ()

Operation

Returns a handle on the nearest ancestor project of the current folder, or null if the current folder is not in any project.

Example
Module m
// check project is open

if (null current Project) {
ack "No project is open"
halt

}

for m in current Project do {
print "Module " m."Name" " is open"

project(handle)

Declaration
Project project(string projectName)
Project project (Item itemRef)

Operation

If the argument specifies a project to which the current user has read access, returns a handle of type Project to the
project; otherwise, returns null.

for project in database

Syntax

for project in database do {

}
where:

project is a variable of type Project

DXL Reference Manual

286

Operation

Assigns project to be each successive project (for which the user has read access) in the database, excluding deleted
projects. Compare with for all projects in database.

Example
This example prints a list of projects in the database:
Project p

for p in database do {
print (name p) "\n"

}

for all projects in database

Syntax

for name in database do {

}
where:

name is a string variable

Operation

Assigns the string name to be each successive project name (for which the user has read access) in the database, including
deleted projects. Compare with for project in database.

Example
This example prints a list of projects in the database:
string s

for s in database do {
print s "\n"

getinvalidCharinProjectName

Declaration

char getInvalidCharInProjectName (string s)

Operation

Returns any character in string s that would be invalid in a project name.

DXL Reference Manual

287

isDeleted(project name)

Declaration

bool isDeleted(string projectName)

Operation

If projectName is a project that has been deleted but not purged, or if it does not exist, or if the user does not have read
access to it, returns true; otherwise, returns false.

This function is retained only for compatibility with eatlier releases. New programs should use the isDeleted (item)
function.

Example
Project p = project "Test Project"

if (!'null p && !isDeleted p)
current = p

isValidName

See “isValidName,” on page 298.

create(Project)

Declaration

Project create(string projName,
string description
[,string adminUser
[,string password,
string loginsystem,
int passwordPolicy,
int adminPolicy,
string &messagell)

string create(string name, description desc, Projecté& p)

Operation

Creates a project, projName, having description. The adminUser and following arguments are retained for
compatibility with earlier releases; in Rational DOORS 6.0, the values of these arguments are ignored. However, a call to
create that uses any of the legacy arguments sets the current folder to the new project (for compatibility with legacy DXL
scripts, which expect the new project to be opened).

You must assign this function to a variable of type Project, otherwise, it tries to create a linkset between modules
projName and description.

Administrator power is required for this function.

DXL Reference Manual

288

The second form of the perm performs the same function as the original perm, but returns any error message, and passes
the created project back via the last argument.

Example
Project p = create("Test Project", "Play area for
DOORS")
closeProject
Declaration

void closeProject()

Operation

Sets the parent of the current project to be the new current folder. In Rational DOORS 6.0, closing a project means
changing the current folder.

Example

closeProject ()

openProject

Declaration

string openProject (string projName
[,string user,
string pass])

Operation

Sets the named project as the current folder. The user and password arguments are retained for compatibility with
carlier releases. In Rational DOORS 6.0 these arguments ate ignored.

If the project opens successfully, returns null; otherwise returns an error message. If the project does not exist, or the user
does not have read access to it, the call fails.

Example

string mess = openProject ("Demo", "Catrina Magali", "aneblr")

doorsVersion

Declaration

string doorsVersion ()

Operation

Returns the version of the current Rational DOORS executable as a string.

DXL Reference Manual

Example

print doorsVersion

Looping within projects

The following sections describe the for loops available for looping within projects:

for all items in project

for open module in project

for all modules in project

for in-partition in project

for out-partition in project

for partition definition in project

for trigger in project

DXL Reference Manual

289

290

DXL Reference Manual

291

Chapter 17
Modules

This chapter describes features that operate on Rational DOORS modules:
* Module access controls

* Module references

* Module information

* Module manipulation

* Module display state

* Baselines

* Baseline Set Definition

* Baseline Sets

* History

* Descriptive modules

* Recently opened modules

* Module Properties

Module access controls

This section describes functions that report on access rights for a module. The module has to be open in exclusive edit
mode.

canCreate(module)

Declaration

bool canCreate (Module m)

Operation

Returns true if the current Rational DOORS user has create access to module m; otherwise, returns false.

canControl(module)

Declaration

bool canControl (Module m)

DXL Reference Manual

292

Operation

Returns true if the current Rational DOORS user can change the access controls on module m; otherwise, returns
false.

canModify(module)

Declaration
bool canModify (Module m)

Operation

Returns true if the current Rational DOORS user can modify module m; otherwise, returns false.f

canDelete(module)

Declaration

bool canDelete (Module m)

Operation

Returns true if the current Rational DOORS user can delete module m; otherwise, returns false.

Module references

This section defines functions and for loops that make use of the Module data type.

See also the functions in “Hierarchy clipboard,” on page 269.

Setting current module

The assignment operator = can be used as shown in the following syntax:
current = Module module
Makes module the current module. See also, the current (module) function.

For large DXL programs, when you set the current module, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrentModule
becomes
(current ModuleRef) = newCurrentModule

DXL Reference Manual

293

Note that this cast only works for assignments to current. It is not useful for compatisons or getting the value of the current
module.

current(module)

Declaration

Module current ()

Operation

Returns a reference to the current module. In some contexts current could be ambiguous, in which case it should be
followed by Module in a cast.

Example

print (current Module) ."Description™ "\n"

module(handle)

Declaration
Module module (Item itemRef)

ModName module (string modRef)

Operation

The first form returns a handle of type Module for i temRef if i temRef is an open module. Otherwise, it returns
null.

The second form returns a handle of type ModName _ for the named module, whether it is open or closed.

for module in database

Syntax

for m in database do {

}
where:

mis a variable of type Module

Operation

Assigns the variable m to be each successive open module (for which the user has read access) in the database.

DXL Reference Manual

294

for open module in project

Syntax

for m in project do {

where:
m is a vatiable of type Module
project is a variable of type Project
Operation

Assigns the variable m to be each successive open module (for which the user has read access) in project. This loop
includes modules in sub folders as well as those in the top level of the project. It does not include modules in projects that
are contained in the project. This only works on the user’s computer.

Example
Module m
int count = 0

for m in current Project do {
print m."Name" "\n"
count++

}
if (count==0)
print "no modules in current project\n"

for all modules in project

Syntax

for moduleName in project do {

}

where:
moduleName is a string variable
project is a variable of type Project

DXL Reference Manual

295

Operation

Assigns the variable moduleName to be each successive module name (for which the user has read access) in project.
This loop includes open or closed modules but only at the top level of the project. This is no longer everything contained in
the project. This only works on the uset’s computer.

Example
string modName

for modName in current Project do
print modName "\n"

for Module in Folder do

Syntax

for m in folder do {

where:
m is a vatiable of type Module
folder is a variable of type Folder
Operation
This provides access to all open modules that have the specified folder as their parent.
Example
Module m
Folder f = current

for m in £ do {

print "Module " (name m) " is open "\n"

Module information

This section defines functions that return information about Rational DOORS modules.

See also the functions in “Hierarchy information,” on page 272.

DXL Reference Manual

296

Module state

Declaration

bool baseline (Module m)

bool exists(ModName modRef)

bool open (ModName modRef)

bool unsaved (Module m)

Operation

Each function returns true for a condition defined by the function name as follows:

Function Returns true if
baseline module m is a baseline; otherwise, returns false
exists module modRef exists in the current project; otherwise, returns false
open module modRef is open in any mode; otherwise, returns false
unsaved module m has not been saved since changes were made; otherwise returns
false
Example
string s = "/projl/SRD"
Item i = item s
if (exists module s) print "and the system requirements ... \n"

if (open module s) print "SRD is open\n"

version

Declaration

string version (Module m)

Operation

Returns the version of open module m as a string.

Example

print (version current Module)

DXL Reference Manual

297

canRead, canWrite(module)

Declaration
bool canRead (Module m)
bool canWrite (Module m)

Operation

Returns whether the current Rational DOORS user has read or write access to the top of open module m.

getSelectedCol

Declaration
int getSelectedCol (Module m)

Operation

Returns the integer identifier for the currently selected column in m. If the specified module is not displayed, or no column
is selected, returns —1.

isRead, isEdit, isShare

Declaration
bool isRead (Module m)
bool isEdit (Module m)

bool isShare (Module m)

Operation
Returns whether module m is open for reading, for editing or in shared mode. Otherwise, returns false.

These functions only return values for modules opened by the current user in the current session.

Example
Module m

for m in current Project do {
if (isEdit m)
print m."Name" " is open edit\n"

DXL Reference Manual

298

getinvalidCharlInModuleName

Declaration

char getInvalidCharInModuleName (string s)

Operation

Returns any character in string s that would be invalid in a module name.

isValidDescription

Declaration

bool isValidDescription (string descString)

Operation

Returns true if descStringis alegal description for a project, module, view or page layout; otherwise, returns false.

Example
This example returns true.

bool b = isValidDescription("Test Description")

isValidName

Declaration

{char|bool} isValidName (string nameString)

Operation

By default, returns the first illegal character of nameString. If you force a type bool, returns true if nameStringis
a legal name for a project, module, view or page layout; otherwise, returns false.

Example

This example returns &, the first illegal character in the name:

char ¢ = isValidName ("illegal&Name")

This example returns true:

char ¢ = isValidName ("legalName")

isValidPrefix

Declaration

bool isValidPrefix(string prefixString)

DXL Reference Manual

299

Operation

Returns true if prefixStringis alegal prefix for an object; otherwise returns false.

Example
This example returns true:

bool b = isValidPrefix ("PREFIX-1")

isVisible

Declaration
bool isVisible (Module m)

Operation

Returns true if module mis open for display on the screen. Otherwise, returns false.

Module manipulation

This section defines the functions for creating modules and performing database administration tasks on modules other
than descriptive modules, which are covered in “Descriptive modules,” on page 343.

See also the functions in “Hierarchy manipulation,” on page 270.

create(formal module)

Declaration

Module create (string name,
string desc,
string prefix,
int absno

[,bool displayl])

string create(string name, description desc, prefix pref, int absnum, Module& m)

Operation

Creates a formal module with name name, description desc, object prefix prefix and starting absolute number
absno. The name argument can be an absolute or relative path. The optional last argument controls whether the module
is displayed in the user interface after it has been created.

The second form creates a formal module. However, in the case of an error which causes no module to be created, the error
message is returned instead of generating a run-time DXL error.

DXL Reference Manual

300 ‘

create(descriptive module)

Declaration

string create(string name, description desc, prefix pref, int absnum, string
filename, Moduleé& m)

Operation

Creates a Descriptive module. When an error occurs, which causes no module to be created, the error message is returned

instead of generating a run-time DXL etror.

create(link module)

Declaration

Module create(string name,
string desc,
int mapping

[,bool displayl])

string create(string name, description desc, int mapping, Moduleé& m)
const int manyToMany
const int manyToOne
const int oneToMany

const int oneToOne

Operation

Creates a link module with name name, description desc, and a mapping. The name argument can be an absolute or
relative path. The mapping argument can take one of the following values: manyToMany, manyToOne, oneToMany
or oneToOne. As with the creation of a formal module, the optional last argument controls whether the module is
displayed in the user interface after it has been created.

The second form of the perm creates a Link module, similat to the perm Module create (name, description,
mapping), but returns error messages instead of generating a run-time DXL etror.

close(module)

Declaration

bool close (Module m
[,bool savel])

Operation

Closes the open module m, with the option of saving changes. If save is true, the user is prompted to save before
closing. If save is false, closes the module without saving. If the module is closed, the call fails.

DXL Reference Manual

301

If the operation fails, returns false. If mis a link module, c1lose only succeeds if there are no loaded linksets and no
other module is currently referring to the link module. Any open link modules that m refers to ate also closed.

The Rational DOORS object clipboard is cleared when a module is closed.

Do not access the module handle after the module has been closed.

downgrade

Declaration
bool downgrade (Module m)

Operation

Sets the open mode for module m to read only, if it is open in edit or shareable mode. This enables other users to open it in
shared mode, or one at a time in exclusive edit mode. If the operation succeeds, returns true; otherwise, returns false.
If the module is closed, the call fails. If there are unsaved changes to the module, then the user is prompted to save the
changes. Alternatively, the save perm can be used prior to downgrade, so that any changes to the module are preserved.

This function is not equivalent to checking whether the current user can modify the given object.

downgradeShare

Declaration

bool downgradeShare (Module m)

Operation

Sets the open mode for module m to shareable, if it is open in edit mode. This enables other users to open it in shared mode
or read mode. If the operation succeeds, returns t rue; otherwise, returns false. If the module is closed, the call fails. If
there are unsaved changes to the module, then the user is prompted to save the changes. Alternatively, the save perm can be
used prior to downgrade, so that any changes to the module are preserved.

This function is not equivalent to checking whether the current user can modify the given object.

printModule

Declaration

void printModule (Module m)

Operation
Opens the print dialog box for the open module m.

Example

printModule current Module

DXL Reference Manual

302

read, edit, share(open module)

Declaration

Module read(string name
[,bool disp[, bool loadStandardView]])

Module edit (string name
[,bool disp[, bool silent[, bool loadStandardView]]])

Module share(string name
[,bool displ, bool silent[, bool loadStandardView]]])

Operation

These functions return a module handle for the module named name. The name argument can be an absolute or relative
path. The read function opens the module for reading, edit for unshared editing, and share for shared editing. The
optional disp flag enables the visibility of the opened module to be specified; the module is displayed in a window if
dispis true or omitted.

The optional parameter silent specifies whether the user should be prompted when the module cannot be opened in the
desired mode because of locks. If this parameter is not supplied it is assumed to be false.

Using the optional parameter ladStandardl iew means you can force the standard view to be loaded as the default. If this
parameter is not supplied it is assumed to be false.

Note: If a module is open in a particular mode, that same module must not be opened in another mode, if the statement
doing this is within a for loop.

Example

Module m = edit ("/Car/Car user reqts", false)

save(module)

Declaration

void save (Module m)

Operation

Saves open module m.

copy(module)

Declaration

bool copy (ModName modRef,
string newName,
string newDesc)

DXL Reference Manual

303

Operation

Copies module modRef to new name newName, with description newDesc, within the same folder or project. All
outgoing links ate copied, but incoming links are not copied, and linksets are not updated.

hardDelete(module)

Declaration
bool hardDelete (ModName &modRer)

Operation

Removes module modRef from the database (compate with the softDelete (module) function); the module cannot
be recovered with undelete (item) following this operation.

If the operation succeeds, sets the argument to null, and returns t rue; otherwise, returns false. If the user does not
have delete access to the item, or if the module is open, the call fails.

The function hardDelete should be used instead of the delete (item) function, for all new programs.

Note: softDelete mustbe used on a module before using hardDelete.

softDelete(module)

Declaration
bool softDelete (ModName modRef)

Operation

Marks module modRef as deleted. The module is not actually deleted until it is purged. Modules marked for deletion can
be recovered using the undelete (item) function.

When used interactively, a user who tries to use this function on a module with links has to confirm or cancel the operation.

In batch mode no confirmation is required.

formalStatus

Declaration

void formalStatus (Module, String status)

Operation

Displays the supplied string in the third area of the status bar in the specified module, which must be a formal module. If
the module is not a formal module a DXL run-time error is generated.

DXL Reference Manual

304

autolndent

Declaration
bool autoIndent (Module)
void autoIndent (bool)

Operation

The first form returns true if auto-indentation for the main column in the specified module is currently turned on, otherwise

it returns false.

The second form sets the auto-indentation status of the current module. The current module should be a formal module,

otherwise a run-time DXL error will occut.

Example

print autoIndent current

Module display state

This section defines functions for getting and setting the display attributes of Rational DOORS modules.

level(module get)

Declaration

int level (Module m)

Operation

Returns the display level of module m, which is between 0 (all levels) and 10.

level(module set)

Declaration

void level (int 1)

Operation

Sets the display level of the current module. Argument 1 must be between 0 (all levels) and 10.

DXL Reference Manual

305

Get display state

Declaration

bool filtering (Module m)
bool graphics (Module m)
bool outlining (Module m)
bool showPictures (Module m)
bool showTables (Module m)

bool sorting (Module m)

Operation

Returns the current display state of attributes in open module m: graphics, filtering, outlining, visibility of pictures, visibility
of tables, or sorting.

Example

Module m = current

int storelevel = level m
bool storeGraphics = graphics m
bool storeFiltering = filtering m

bool storeOutlining outlining m
bool storeSorting = sorting m
functionThatChangesDisplay

// now restore old settings

level storeLevel

graphics storeGraphics

filtering storeFiltering
outlining storeOutlining

sorting storeSorting

if (showTables current) {
print "table contents are visible"

}

if (!showPictures current) {
ack "Pictures are not visible"

DXL Reference Manual

306

Set display state

Declaration

void filtering(bool onOff)
void graphics (bool onOff)
volid linksVisible (bool onOff)
void outlin{el|ing} (bool onOff)
void showPictures (bool onOff)
volid showTables (bool onOff)

void sorting(bool onOff)

Operation

Turns on or off in the current module the attributes: filtering, graphics, visibility of links, outlining, visibility of pictures,
visibility of tables and sorting.

Example
graphics on
graphics true
graphics off
showPictures true

showTables false

refresh

Declaration

void refresh (Module m)

Operation

Refreshes the display for open module m. Rational DOORS refreshes the current module after the termination of a DXIL
script. However, scripts that change the displays of other modules, or that create dialog boxes, need to manage display
updates explicitly with this function.

bringToFront

Declaration

string bringToFront ([Module])

DXL Reference Manual

307

Operation

If a module is supplied it will bring that module window to the front of other windows. If a module is not supplied it will
bring the Database Explorer window to the front. Note that this will not bring windows to the front of modal dialogs.

Baselines

This section defines functions that operate on Rational DOORS formal module baselines. The file:
SDOORSHOME/1ib/dx1l/Example/baseline.dxl
contains a baseline comparison program, which uses the functions described in this section.

Many of the functions use the data type Baseline.

Note: When retrieving information, e.g. annotation, from a baseline you must use them withina for baseline in
module loop.

baseline

Declaration

Baseline baseline (int major,
int minor,
string suffix)

Operation

Returns a baseline handle for the combination of the specified ma jor and minor version numbers and suffix string. If
the baseline does not have a suffix, use null. This is only used to get a baseline handle for use in the baseline 1oad perm.
It cannot be used to retrieve information about that baseline, for example annotation information.

Example

Baseline b = baseline (1,0, "alpha")

baselineExists

Declaration

bool baselineExists (Module m,
Baseline b)

Operation

Returns t rue when baseline b exists in module m; otherwise returns false.

Example

print baselineExists (current Module, b)

DXL Reference Manual

308 ‘

create(baseline)

Declaration

void create ([Module m,]
Baseline b,
string annot)

Operation

Creates a baseline for module m as specified by baseline handle b and annotation string annot. If the first argument is
omitted, it uses the current module.

When this function is used to create a baseline, the module where the baseline is being created will be closed.

Use the nextMajor, nextMinor functions to instantiate the baseline handle.

delete(baseline)

Declaration

void delete ([Module m,]
Baseline b)

Operation

This enables deletion of baselines in formal modules. The first argument defaults to the current module.
Example

Baseline b = baseline (0, 1, "")

if (baselineExists (current Module, b)) delete (b)

Get baseline data

Declaration

int major (Baseline b)

int minor (Baseline b)

string suffix (Baseline b)
string annotation (Baseline b)
string user (Baseline b)

Date dateOf (Baseline b)

Operation

These functions return the various data fields associated with baseline b. All these functions are included in the “Baselines
example program,” on page 311. They must be used within a for baseline in module loop.

DXL Reference Manual

getMostRecentBaseline

Declaration

Baseline
getMostRecentBaseline (Module m
[,bool lastbaselinel)

Operation

Returns the last baseline. If 1astbaseline is set to true, it returns the version number of the last baseline even if it

has been deleted. Otherwise, it returns the last baseline that still exists.

Example
Module m = current
Baseline b = getMostRecentBaseline (m)

print (major b)"." (minor b) (suffix b)"
" (annotation b)"\n"

getinvalidCharlnSuffix

Declaration
char getInvalidCharInSuffix(string s)

Operation

Returns any character in string s that would be invalid in a baseline suffix.

load

Declaration

Module load([Module m,]
Baseline b,
bool display)

Operation

Loads baseline b of module m; and if the last argument is on or true, displays it. If the first argument is omitted, it uses

the current module.

Example

This example loads baseline 1.0 (without a suffix) of the current module, without displaying it.

load (baseline(1,0,null), false)

DXL Reference Manual

309

310

nextMajor, nextMinor

Declaration

Baseline nextMajor ([string suffix])
Baseline nextMinor ([string suffix])
Operation

Returns the next major or minor baseline, with or without a suffix.
Example

create (nextMajor, "alpha review")

create (nextMajor "A", "alpha review")

suffix

Declaration

Baseline suffix(string suffix)

Operation
Returns a new suffix version of the last baseline.
Can be used to baseline handle for the current version of a module.

Example

create (suffix "AA", "no annotation")

for baseline in module

Syntax

for b in module do {

where:
b is a vatiable of type Baseline
module is a variable of type Module
Operation

Assigns the baseline b to be each successive baseline found for module module.

DXL Reference Manual

311

Example
Baseline b

for b in current Module do {

print (major b) "." (minor b) (suffix b) "
\t"

print (user b) "\t " (dateOf b) "\n"
(annotation b) "\n"

Baselines example program

// baseline DXL Example
/*

Example of baseline DXL
*/
Baseline b
Module old = current

for b in current Module do {

print (major b)"." (minor b) (suffix b)"
" (annotation b)"\n"

load (b, true)

break // just load first one
}
current = old // reset
if (confirm "create example baseline?") {

create (nextMajor, "annotation helps explain
project history")

// current Module is closed by create.

module(handle)

Declaration

ModName module (ModuleVersion modver)

Operation

This returns a handle of type ModName_ for the given ModuleVersion modver. This gives access to information like
name, description, etc. It returns null if the ModuleVersion does not reference an existing module to which the user has
read access.

DXL Reference Manual

312‘

data(for ModuleVersion)

Declaration

Module data (ModuleVersion modver)

Operation

This returns the data for the given ModuleVersion if the user has it open, loaded into memory. Otherwise, it returns
null.

load(ModuleVersion)

Declaration

Module load(ModuleVersion modver, bool display)

Operation

This loads the data (read-only mode) for the given ModuleVersion, if it references a current version or baseline to
which the user has read access. If the display argument is t rue, then the baseline will be displayed. The perm returns the
data on success, and null on failure. If the ModuleVersion argument is null, the perm will return null.

moduleVersion(handle)

Declaration
ModuleVersion moduleVersion (Module m)
ModuleVersion moduleVersion (ModName modRef[,Baseline b])

ModuleVersion moduleVersion(string index [,Baseline b])

Operation
The first form returns the ModuleVersion reference for the given module version. The module version must be open.

The second form returns the ModuleVersion reference for the given ModName /Baseline combination. The
reference is to the current version of the module if the Baseline argument is omitted.

The third form returns the ModuleVersion reference for the given index/Baseline combination. The reference is to the
current version if the Baseline argument is omitted.

isBaseline(ModuleVersion|Module)

Declaration

bool isBaseline (ModuleVersion modver| Module m)

DXL Reference Manual

313

Operation

This returns true if, and only if, the given ModuleVersion or module represents a baseline of a module.

baselinelnfo(current Module)

Declaration

Baseline baselineInfo (Module m)

Operation

This returns the baseline designation information of the specified open module m. Returns null if mis a cutrent version.

baseline(ModuleVersion)

Declaration

Baseline baseline (ModuleVersion modver)

Operation

This returns a baseline handle with the major, minor and suffix settings extracted from the ModuleVersion modver
supplied as an argument. The user, date and annotation will not be initialized. Returns null if modver corresponds to a

current version.

baselineExists(ModuleVersion)

Declaration

bool baselineExists (ModuleVersion modver)

Operation

This returns true if, and only if, the baseline referenced by the ModuleVersion modver argument exists in the

database and can be read by the user.

name(ModuleVersion)

Declaration

string name (ModuleVersion modver)

Operation

Returns the name of the module referenced by ModuleVersion modver. Returns null if modver does not refer to a

module to which the user has read access.

DXL Reference Manual

314 ‘

fullName(ModuleVersion)

Declaration
string fullName (ModuleVersion modver)

Operation

Returns the full name, including path, of the module referenced by ModuleVersion modver. Returns null if modver

does not refer to a module to which the user has read access.

versionString(ModuleVersion)

Declaration

string versionString (ModuleVersion modver)

Operation

Returns the version ID specified in the ModuleVersion modver, in the format <major>.<minor> where there is no
suffix, or <major>.<minor>(<suffix>). If modver specifies a current version, this perm returns null.

delete(Baseline)

Declaration

void delete ([Module m,] Baseline b)

Operation

Deletes the specified baseline in a formal module. First argument defaults to the current module.

getMostRecentBaseline(Module)

Declaration
Baseline getMostRecentBaseline (Module m[, bool deleted])

Operation

Updated the getMostRecentBaseline perm to take an optional 2nd argument which if t rue directs the perm to
return the version number of the last baseline even if it has been deleted. Otherwise, it returns the last baseline which still

exists.

DXL Reference Manual

315

Baseline Set Definition

for BaselineSetDefinition in Folder

Declaration
for baseSetDef in f

where:

baseSetDef is a variable of type
BaselineSetDefinition

£ is a variable of type Folder

Operation

This will return all Baseline Set Definitions baseSetDef whose descriptions are held in the given Folder £, which might
also be a Project, to which the user has Read access. The Folder’s Baseline Set Definition list is read from the database at the
start of this iterator.

for BaselineSetDefinition in ModName_

Declaration

for baseSetDef in modRef

where:

baseSetDef is a variable of type BaselineSetDefinition
modRef is a variable of type ModName
Operation

This returns all of the Baseline Set Definitions to which the user has Read access, which include the specified module in
their lists.

create(BaselineSetDefinition)

Declaration

string create (Folder f, string name, string desc, BaselineSetDefinition &bsd)

DXL Reference Manual

316

Operation

This enables a user with Create access in the Folder to create a new Baseline Set Definition bsd with the given name and
description. The new Baseline Set Definition will initially inherit its access controls from the folder. The name must
conform to the constraints which apply to folder names, and must be unique across the other Baseline Set Definitions in
that same folder. The description desc might be an empty string.

The newly created Baseline Set Definition is returned in the supplied bsd parameter.

The returned string will be non-null in the case that the Baseline Set Definition could not be created :
* If the name clashes with the name of some other Baseline Set Definition on that Folder

¢ Some i/o or lock error

* Insufficient access

In this case, no Baseline Set Definition will be created (the bsd reference will be set to null)

rename(BaselineSetDefinition)

Declaration

string rename (BaselineSetDefinition bsd, string newName)

Operation

This enables a user with Modify access to change the name of the Baseline Set Definition bsd. It returns null on success,
and an error message on failure, including insufficient access, or the Baseline Set Definition not being locked for edit, or the
name not being unique in that Folder.

name(BaselineSetDefinition)

Declaration

string name (BaselineSetDefinition bsd)

Operation

This returns the name of the given Baseline Set Definition bsd.

setDescription(BaselineSetDefinition)

Declaration

string setDescription (BaselineSetDefinition bsd, string desc)

Operation

This enables a user with Modify access to change the description of the Baseline Set Definition. It returns null on success,
and an error message on failure, including insufficient access.

Alock on the Baseline Set Definition is required to change the description of that Baseline Set Definition. This lock must be
acquired using the lock() perm.

DXL Reference Manual

317

description(BaselineSetDefinition)

Declaration

string description (BaselineSetDefinition bsd)

Operation

This returns the description text for the given Baseline Set Definition bsd. If the Baseline Set Definition’s information has
not been read, this will cause the information to be read from the database.

for module in BaselineSetDefinition

Declaration
for modRef in bsd do {

}
where:
modRef is a variable of type ModName
bsd is a vatiable of type
BaselineSetDefinition
Operation

This returns references to all modules (to which the user has Read access) which are included in the Baseline Set Definition
bsd. If the Baseline Set Definition information has not been read, this will cause the information to be read from the
database. Modules that have been deleted (but not purged) are included in the list of modules returned by this iterator.

addModule(BaselineSetDefinition)

Declaration
string addModule (ModName modRef, BaselineSetDefinition bsd)

Operation

This enables a user with Modify access to add a module to the Baseline Set Definition’s list, if the Baseline Set Definition
bsd islocked by the user. It will return a string on error, for example if the user does not have Modify access to the
Baseline Set Definition or a lock on the Baseline Set Definition.

DXL Reference Manual

318

removeModule(BaseLineSetDefinition)

Declaration

string removeModule (ModName modRef, BaselineSetDefinition bsd)

Operation

This enables a user with Modify access to remove a module from the Baseline Set Definition’s list, if the Baseline Set
Definition bsd is locked by the user.

delete(BaselineSetDefinition)

Declaration

string delete (BaselineSetDefinition &bsd)

Operation

This enables a user with Delete access to delete a Baseline Set Definition from its parent folder. Once a Baseline Set
Definition has been deleted, it cannot be undeleted. On success, the argument Baseline Set Definition will be set to null. A
Baseline Set Definition cannot be deleted if another user has it locked for editing.

lock(BaselineSetDefinition)

Declaration

string lock(BaselineSetDefinition bsd)

Operation

If the user has Modify access to the Baseline Set Definition bsd, this places an exclusive editing lock on it, and reads the
information on the Baseline Set Definition from the database. It also ensures that there is a share-lock on its parent folder.
Only one session can have a lock at any one time on a Baseline Set Definition, and only a session with a lock can save or
modify the Baseline Set Definition, or create a Baseline Set from it. A Baseline Set Definition cannot be modified without it

being locked.

Moreover, changes will not be saved to the database until and unless the user performs a save

(BaselineSetDefinition).

Notice that it is the responsibility of the programmer to call unlock (BaselineSetDefinition) in order to release a
Baseline Set Definition lock acquired by lock (BaselineSetDefinition).

unlock(BaselineSetDefinition)

Declaration

string unlock (BaselineSetDefinition bsd)

DXL Reference Manual

319

Operation

This unlocks a locked Baseline Set Definition bsd, and unlocks its parent Folder if that is not held locked for some other
reason. If changes have been made and not saved since the Baseline Set Definition was locked, the Baseline Set Definition

information will be read again from the database.

save(BaselineSetDefinition)

Declaration

string save (BaselineSetDefinition bsd)

Operation

This saves the uset’s Baseline Set Definition information to the database, as long as the user has an editing lock on the
Baseline Set Definition. It returns null on success, and an error message on failure.

read(BaselineSetDefinition)

Declaration

string read(BaselineSetDefinition bsd)

Operation

This reads the current Baseline Set Definition bsd information from the database, and does not require a lock.

If the Baseline Set Definition is locked, and unsaved changes have been made to it, those changes will be lost when read() is
called.

isanyBaselineSetOpen(BaselineSetDefinition)

Declaration

bool isAnyBaselineSetOpen (BaselineSetDefinition bsd)

Operation

Returns true if the BaselineSetDefinition has an open baseline set associated with it, and false if it does not. A null

argument results in a run-time error.

get(BaselineSetDefinition)

Declaration

AccessRec get (BaselineSetDefinition bsd, string user, string &message)

DXL Reference Manual

320

Operation

On success, this returns the access record for the Baseline Set Definition bsd for the specified user. If user is null, the
default access will be returned. The &message string is null on success, and set to an error message on failure.

inherited(BaselineSetDefinition)

Declaration

string inherited(BaselineSetDefinition bsd)

Operation

This enables the user to set the Baseline Set Definition bsd to inherit its access controls from its parent Folder.

specific(BaselineSetDefinition)

Declaration

string specific(BaselineSetDefinition bsd)

Operation

If the Baseline Set Definition bsd has inherited access rights, this gives it specific access rights, with their initial values

inherited from its parent Folder.

isAccesslnherited(BaselineSetDefinition)

Declaration

string isAccessInherited (BaselineSetDefinition bsd, bool &inherited)

Operation

This sets the inherited argument true or false depending on whether the Baseline Set Definition’s access rights are
inherited. It returns null on success, and an error message on failure.

set(BaselineSetDefinition)

Declaration

string set (BaselineSetDefinition bsd, Permission ps, string user)

Operation

This sets a specific access permission for a given user. If user is null, then it sets a default access permission. It returns

null on success, and an error string on failure.

DXL Reference Manual

321

unset(BaselineSetDefinition)

Declaration

string unset (BaselineSetDefinition bsd, string user)

Operation

This removes specific access rights for the given user on BaselineSetDefinition bsd. If user is null, then it sets a
default access permission. It returns null on success, and an error string on failure.

unsetAll(BaselineSetDefinition)

Declaration

string unsetAll (BaselineSetDefinition bsd)

Operation

This removes all specific access rights from the Baseline Set Definition bsd. It returns null on success, and an error
message on failure.

for access record in Baseline Set Definition

Declaration

for ar in bsd do {

where:
ar is a variable of type AccessRec
bsd is a vatiable of type
BaselineSetDefinition
Operation

This returns all the specific access right records for the specified Baseline Set Definition.

for access record in all Baseline Set Definition

Declaration
for ar in all bsd do {

DXL Reference Manual

322

where:

ar is a variable of type AccessRec

bsd is a variable of type BaselineSetDefinition
Operation

Iterates over the access records of the applicable ACL for the specified Baseline Set Definition.
Example 1
void createBSD()

// creates a BSD containing all the Formal modules in the current Folder
{
BaselineSetDefinition newBSD = null
string bsdName = (name current Folder) " modules"
string bsdDesc = "All modules in this folder"
string errmess
errmess = create (current Folder, bsdName, bsdDesc, newBSD)
if (!'null errmess)

{

errorBox "Unable to create a new Baseline Set Definition: " errmess
return
}
errmess = lock (newBSD)

if (!'null errmess)
{
errorBox "Cannot lock new Baseline Set Definition: " errmess

return

// Add modules
Item i
ModName mod
for i in current Folder do
{
if (type(i) == "Formal")

DXL Reference Manual

mod = module (fullName i)
{

if (!'null mod)

{

errmess = addModule (mod, newBSD)
if (!'null errmess)
{
errorBox "Could not add module " name (mod) ": " errmess
}
}
}
}
}
errmess = save (newBSD)
if (!null errmess)
{
errorBox "Failed to save Definition: " errmess

unlock (newBSD)

createBSD

Example 2

void printBSDs ()

// prints a list of Baseline Set Definitions in the current Folder
// and a list of modules in each Baseline Set Definition

{

BaselineSetDefinition bsd
for bsd in current Folder do

{

print name (bsd) ": " description(bsd) "

DXL Reference Manual

323

324

string errmess = read(bsd)
if (!'null errmess)

{

print " [Could not read Definition: " errmess "]

}
else if (isEmpty (bsd))
{

print " [Empty Baseline Set Definition]

else

ModName mod
for mod in bsd do
{

print " " (fullName mod) "

}

print wn

printBSDs

Baseline Sets

for BaselineSet in BaselineSetDefinition

Declaration
for bs in bsd do {

DXL Reference Manual

325

}
where:

bs is a variable of type BaselineSet

bsd is a variable of type BaselineSetDefinition
Operation

This returns the Baseline Sets, in order of creation, which have been created from a given Baseline Set Definition.

isBaselinePresent(BaselineSet)

Declaration

bool isBaselinePresent (BaselineSet bs, ModName modRef)

Operation

This returns true if, and only if, a baseline of the module referenced by modRe £ is in the BaselineSet bs.

create(Baseline Set)

Declaration

string create(BaselineSetDefinition bsd, bool major, string suffix, string
annotation, BaselineSet &bs)

Operation

This enables a user with Create access to create a new (Open) Baseline Set &bs from the Baseline Set Definition bsd. If
majoris true, the version of the Baseline Set will be a new major version number; else it will be a new minor version
number. This fails if the Baseline Set Definition is not locked by the user, or if there is already an Open baseline set for it.

The returned string will be null on success, with &bs assigned to the baseline set so created. Otherwise, the returned string
will be non-null and will contain some description of the failure, in this case &bs will be set to null.

major(BaselineSet)

Declaration

int major (BaselineSet bs)

Operation

This returns the major version number of a Baseline Set bs.

DXL Reference Manual

326 ‘

minor(BaselineSet)

Declaration

int minor (BaselineSet bs)

Operation

'This returns the minor version number of a Baseline Set bs.

suffix(BaselineSet)

Declaration

string suffix (BaselineSet bs)

Operation

This returns the suffix (might be null) in the version identifier of the Baseline Set bs.

version|D(BaselineSet)

Declaration

string versionID(BaselineSet bs)

Operation

This returns the whole version identifier of the Baseline Set bs in the form major.minor[(suffix)].

annotation(BaselineSet)

Declaration

string annotation (BaselineSet bs)

Operation

This returns the comment annotation which has been stored with a Baseline Set bs.

user(BaselineSet)

Declaration

string user (BaselineSet bs)

Operation

This returns the name of the user who created the Baseline Set bs.

DXL Reference Manual

327

dateOf(BaselineSet)

Declaration
Date dateOf (BaselineSet bs)

Operation

This returns the date/time when the Baseline Set bs was created.

isOpen(BaselineSet)

Declaration

bool isOpen (BaselineSet bs)

Operation

This returns t rue for an Open Baseline Set bs, and false for a Closed one.

close(baselineSet)

Declaration

string close (BaselineSet bs)

Operation

This closes an Open Baseline Set bs. It requires the user to have a lock on the Baseline Set Definition, and returns null on
success, and an error message on failure (e.g. if the Baseline Set is not Open, or the user does not hold a lock on the Baseline
Set Definition).

setAnnotation(BaselineSet)

Declaration
string setAnnotation (BaselineSet bs)

Operation

This enables a user with Modify access to the Baseline Set Definition to change the annotation text on an Open Baseline Set
bs. It returns null on success, and an error string on failure (e.g. if BaselineSet is Closed). This should fail if the user
does not have a lock on the Baseline Set Definition.

DXL Reference Manual

328

addBaselines(BaselineSet)

Declaration

string addBaselines (Skip modList, BaselineSet bs)

Operation

This enables a user with Modify access to the Baseline Set Definition to baseline a set of modules and add the baselines to
an Open Baseline Set. The variable modList is a skip list containing values of type modName_. These modules must be
included in the Baseline Set Definition which defines the Baseline Set, and must not already be contained in the Baseline
Set. It returns null on success, and an error message on failure (e.g. if the BaselineSet is Closed). It fails without creating or
adding any baselines if the user cannot add all of them. It fails if the user does not hold a lock on the Baseline Set Definition.

for ModuleVersion in BaselineSet

Declaration

for modver in bs do {

}
where:
modver is a variable of type ModuleVersion
bs is a variable of type BaselineSet
Operation

This returns references to all of the baselines, to which the user has Read access, in the Baseline Set.

for ModuleVersion in all BaselineSet

Declaration

for modver in all bs do {

1

where:
modver is a variable of type ModuleVersion
bs is a variable of type BaselineSet

DXL Reference Manual

329

Operation

"This returns references to all baselines in the Baseline Set and all modules which could have been included in the Baseline
Set, to which the user has Read access, and which have not been purged.

for BaselineSet in ModName

Declaration

for bs in modRef do {

where:
bs is a variable of type BaselineSet
modRef is a variable of type ModName
Operation

This returns any open Baseline Sets to which the current version of the specified module can currently be baselined.

baselineSet(ModuleVersion)

Declaration
BaselineSet baselineSet (ModuleVersion modver)

Operation

This returns the Baseline Set, if there is one and the user has Read access to it, which contains the given ModuleVersion
modver.

Example 1
void printModuleBSDs ()
// prints a list of Baseline Set Definitions which include the current Module
// and a list of Baseline Sets created for each Definition
{

if (null current Module)

{

errorBox "This DXL must be run from a current Module."

return

DXL Reference Manual

330

DXL Reference Manual

BaselineSetDefinition bsd

ModName mod = module (current Module)

for bsd in mod do

{

print name (bsd) ": " description(bsd) "\n"

string errmess = read(bsd)
if (!'null errmess)

{

print " [Could not read Definition: " errmess "]"

}
else if (isEmpty (bsd))
{

print " [Empty Baseline Set Definition]"

else

BaselineSet bs
for bs in bsd do
{

print versionID(bs) ": " annotation(bs) ""
print "Created by " user(bs) " on " dateOf (bs) ""

ModuleVersion mv
for mv in bs do

{

print " " (fullName mv) " [" (versionString mv)

}

print "\n"

"] "

331

}
printModuleBSDs

Example 2
volid baselineModuleToSets ()

// Adds a new baseline of the current module to any open

// Baseline Set that can include it. Creates a new Baseline Set
// for definitions that include the module but do not have an
// open Baseline Set.

{
if (null current Module)
{
errorBox "This DXL must be run from a current Module."

return

string errmess

BaselineSetDefinition bsd
BaselineSet bs

ModName mod = module (current Module)
int skipIndex = 0

Skip moduleSkip = create

put (moduleSkip, skipIndex++, mod)

for bsd in mod do

{

print wn

if (!isAnyBaselineSetOpen (bsd))
{

print "Creating new Baseline Set: "

errmess = lock (bsd)
if (null errmess)

{

DXL Reference Manual

332

errmess = create(bsd, true, "new", "Created by
baselineModuleToSets ()", bs)

}

if (!null errmess)
{

print "Failed to create Baseline Set: " errmess "

continue
}
unlock (bsd)

else

for bs in bsd do
{
if (isOpen bs)
{
break

if (isBaselinePresent (bs, mod))
{

print "Module is already in the Open Baseline Set."

else

errmess = addBaselines (moduleSkip, bs)
if (null errmess)
{

print "Added baseline to Baseline Set " versionID (bs)

DXL Reference Manual

333

else

print "Failed to add baseline to Baseline Set: " errmess

}

baselineModuleToSets

History

This section defines DXL functions for manipulating history records. Three main data types are introduced:

History a history record
HistoryType a type of history
HistorySession a summary of a module’s session history. Every time a Rational

DOORS module is opened in either edit or shareable mode, a session
summary is saved. You can access this information using the functions
that act on an object of type HistorySession.

You can only access objects of type History and HistoryType using the for history record in type
loop.

You can only access an object of type HistorySession using the for history session in module loop.

Constants (history type)

Declaration

const

const

const

const

const

const

const

HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType

HistoryType

unknown

createType
modifyType
deleteType
createAttr
modifyAttr

deleteAttr

DXL Reference Manual

334

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType

HistoryType

Operation

These constants represent the different types of history record.

createObject
copyObject
moveObject
modifyObject
deleteObject
unDeleteObject
purgeObject
clipCutObject
clipMoveObject
clipCopyObject
createModule
baselineModule
partitionModule
acceptModule
returnModule
rejoinModule
createlink
modifyLink
deletelink
insertOLE
removeOLE
changeOLE
pasteOLE
cutOLE

readLocked

synchronizeModule

commentModule

commentObject

Concatenation (history type)

The space character is the concatenation operator, which is shown as <space> in the following syntax:

DXL Reference Manual

HistoryType ht <space> string s

Concatenates the string s onto the history type ht, and returns the result as a string.

History properties

Properties are available for use in combination with the .

(dot) operator to extract information from a history record.

Notably, the properties which are available for individual history entry will depend on the type of that entry. The

syntax for using the properties is:

hr.property

where:
hr

property

is a variable of type History

is one of the history properties

The value of property can be one of the following:

String property Extracts

attrName attribute name of history record

author author of history record

newPosition new position of history record

position current position of history record

type type of history record; this can be one of the values listed in
“Constants (history type),” on page 333

typeName type name of history record

targetInitialName

linkInitialName

plainOldvalue
plainNewValue

plainOldUnicodeValue

plainNewUnicodeValue

the name of the target module at the time of link creation (only
available to the administrator)

the name of the link module at the time of link creation (only
available to the administrator)

plain text version of the old value
plain text version of the new value

plain text version of the old value, but with any Symbol
characters converted into the equivalent Unicode characters, so
that the value matches the displayed rich text value

plain text version of the new value, but with any Symbol
characters converted into the equivalent Unicode characters, so
that the value matches the displayed rich text value

DXL Reference Manual

335

336

Date property Extracts

date date of history record

Integer property Extracts

absNo absolute number of history record
numberOfObjects number of objects in history record
oldAbsNo old absolute number of history record
sessionNo tracks the manipulation of history information
sourceAbsNo the absolute number of the source object
targetAbsNo the absolute number of the target object
ModuleVersion property Extracts

linkVersion the version of the link module
targetVersion the version of the target module

Any appropriate type property Extracts

newValue new value of user defined attribute
oldvalue old value of user defined attribute
Example

print hr.type
print hr.date
print hr.author
print hr.attrName
print hr.typeName

print hr.position

print hr.newPosition

print hr.numberOfObjects

DXL Reference Manual

337

print hr.absNo

print hr.oldAbsNo

print hr.sessionNo

Date histDatOld = hr.oldValue

Date histDateNew = hr.newValue

goodStringOf

Declaration
string goodStringOf (HistoryType ht)

Operation

Returns a string to represent the history type ht in the user interface, for example, "Create Object" for the
createObject history type.

stringOf(history type)

Declaration
string stringOf (HistoryType ht)

Operation

Returns the history type ht as a string.

print(history type)

Declaration

void print (HistoryType ht)

Operation

Prints the history type ht in the DXL Interaction window’s output pane.

for history record in type

Syntax
for hr in type do {

}

DXL Reference Manual

338

where:
hr is a variable of type History
type is a variable of type Module, object of type Object, or a call
to the function top
Operation

Assigns the variable hr to be the history records for modules, objects, ot top-level items. Top-level items are those module
history records that apply to the whole module, not individual objects. The syntax for looping through top-level items is as
follows:

for hr in top (module) do { ... }

where moduleis of type Module.

Example

This example prints out the type of each top level history record of the current module:
History h

for h in top current Module do print h.type

number(history session)

Declaration

int number (HistorySession hs)

Operation

Returns an identifier that is unique within the parent module for a patticular session, starting from 0.

when

Declaration

Date when (HistorySession hs)

Operation

Returns the timestamp for a particular session.

who

Declaration

string who (HistorySession hs)

DXL Reference Manual

Operation

Returns the name of the Rational DOORS user responsible for a particular session (who opened the module).

baseline(history session)

Declaration

string baseline (HistorySession hs)

Operation

If a baseline was created during a particular session, returns the details in the format version (suffix).

diff(buffer)

Declaration

string diff (Buffer result, Buffer source, Buffer target, string removeMarkup,
insertMarkup)

string diff (Buffer result, Buffer source, Buffer target)

string diff (Buffer result, Buffer source, Buffer target, bool fullRTF)

Operation
Computes the annotated difference, or "redlined difference” between soutce and target.
The result is valid only when a non-null string is returned.

Removals and insertions are annotated by removeMarkup and insertMarkup -- this must be well-formed RTF
strings onto which subsequent text might be concatenated. The standard values for these are "\cfl\strike "
"\cf2\ul " (notice the spaces). See diff/3 for a perm which uses these defaults.

and

Three colors are defined and might be used within these commands: RED, GREEN and BLUE:
\cfl - RED

\cf2 - GREEN

\cf3 - BLUE

For the third form of the perm, When true, the RTF returned as a result is full RTF (containing the correct RTF header,
font table and color table). When false, the returned result is an RTF fragment, suitable for adding or inserting into a full

RTF stream.

Example
DB db = create "Show diff"
DBE textbox = richText (db, "stuff", "", 200, 200, true)
Buffer buffl = createl()
Buffer buff2 = create()

Buffer resBuf = create()

DXL Reference Manual

339

340

buffl = "0ld Text"

buff2 = "New Text"

diff (resBuf, buffl, buff2, "\\cfl\\strike ", "\\cf3\\ul ")
realize db

useRTFColour (textbox, true)

set (textbox, tempStringOf resBuf)

show db

delete resBuf
delete buffl
delete buff2

Example
Buffer one = create
one = "one"
Buffer two = create
two = "two"
Buffer result = create

diff (result, one, two, false)
print stringOf (result) "\n\n"
diff (result, one, two, true)

print stringOf (result)

Output:

{\cfl\strike one} {\cf3\ul two}

{\rtf1\deff1000{\ fonttbl {\f1012\ fswiss\ fcharset177 Arial;} {\f1011\fswiss\fcharset162

Arial;} {\f1010\ fswiss\fcharset238 Arial;} {\f1009\ fswiss\fcharset204 Arial;} {\f1008\fswiss\fcharset161
Arial;} {\f1007\ fswiss\fcharsetO Arial;} {\f1006\froman\fcharset177 Times New

Roman;} {\f1005\ froman\fcharset162 Times New Roman;} {\f1004\ froman\ fcharset238 Times New
Roman;} {\f1003\ froman\ fcharset204 Times New Roman;} {\f1002\froman\fchatset161 Times New
Roman;} {\f1001\ftech\fcharset2 Symbol;} {\f1000\froman\fcharsetO Times New Roman;} } { {\colottbl
;\red255\green0\bluel;\red0\green255\blue0;\red0\green0\blue255;} {\cf1\strike one} {\cf3\ul two}} }

DXL Reference Manual

341

Link History

The name of a module level boolean attribute which controls whether history for link creation and deletion is recorded.
Used as a normal attribute but with the addition of the reserved keyword.

Example
const string LINK HISTORY ATTRNAME = "Link History"

Module m = current

if (m != null){

// get the value

bool linkHistoryBefore = m. (reserved LINK HISTORY ATTRNAME)

// set the value

m. (reserved LINK HISTORY ATTRNAME) = !linkHistoryBefore

// get the value again

bool linkHistoryAfter = m. (reserved LINK HISTORY ATTRNAME)

print "Before: " linkHistoryBefore "\n"
print "After: " linkHistoryAfter "\n"
}
lastModifiedTime
Declaration

Date lastModifiedTime ({Module|Object|Link})

Operation

Returns the date the supplied item was last modified, including the time of the modification.

DXL Reference Manual

342

for history session in module

Syntax

for hs in module do {

where:
hs is a vatiable of type HistorySession
module is a variable of type Module
Operation

Assigns the variable hs to be each successive history session record for the specified module.

Example
HistorySession hs
// process module

for hs in current Module do
{
// identifier, date and user
print number (hs) ", " when(hs) ", " who(hs)

string sBaseline = baseline (hs)
// only relevant if baseline info exists

if (sBaseline != null)
{
// baseline name
print " - '" sBaseline "': "

}

print "\n"

History example program

// history DXL Example

/*
Example history DXL program.
Generate a report of the current Module's
history.

*/

// print a brief report of the history record

DXL Reference Manual

void print (History h) {
HistoryType ht = h.type

print h.author "\t" h.date "\t" ht "\t"

if (ht == createType ||
ht == modifyType ||
ht == deleteType) { // attribute type
print h.typeName
} else if (ht == createAttr |
ht == modifyAttr |
ht == deleteAttr) {

// attribute definition
print h.attrName

} else if (ht == createObject |
ht == clipCopyObject ||
ht == modifyObject) { // object

print h.absNo

if (ht==modifyObject) {
// means an attribute has changed

string oldV = h.oldValue
string newV = h.newValue

print " (" h.attrName ":" oldv " -> "
newV ") "

}
print "\n"

}

// Main program

History h

print "All history\n\n"

for h in current Module do print h

print "\nHistory for current Object\n\n"
for h in current Object do print h
print "\nNon object history\n\n"

for h in top current Module do print h

Descriptive modules

This section defines DXL functions for Rational DOORS desctiptive modules.

DXL Reference Manual

343

344 ‘

create(descriptive module)

Declaration

Module create(string name,
string description,
string prefix,
int absno,

string filename)
Operation

Creates a new descriptive module based on a valid module name and an accessible text file.

If the operation succeeds, returns a reference to the new module; otherwise, returns null.

Example

Module m = create ("Source", "source documentation","S",1,"c:\\docs\\source.txt")

markUp

Declaration
Object markUp (Object o,
int firstchar,
int lastchar)
Operation

Marks up a range of object text in a descriptive module, as defined by firstchar and lastchar.

If the operation succeeds, returns a reference to the newly marked up object; otherwise, returns a reference to the unmarked

up object.
If firstcharis1 or less, the range begins at the first character.

If lastchar is greater than the number of characters in the specified object, the range ends with the last character in the
object.

If firstchar is greater than the number of characters in the object, or if Iastchar is less than 1, or less than
firstchar, the extracted object contains no text.

Example
This example marks up the 2nd, 3rd and 4th characters in the curtent object:

markUp (current Object, 2, 4)

DXL Reference Manual

345

undoMarkUp

Declaration
void undoMarkUp (Object o)

Operation

Changes a descriptive module object o from being a marked up object to being an unmarked up object. If o does not refer
to a marked-up object, the function has no effect.

Example

undoMarkUp (current object)

setUpExtraction

Declaration

bool setUpExtraction (Module m,
string formal,
string link)
Operation

Sets up the descriptive module m for the extraction of marked up objects to the formal module formal, with links
between the source objects and the extractions stored in the link module 11ink.

For a successful operation formal must be open in edit mode, and 1ink must be available for editing.

If the operation is successful, it returns t rue; otherwise, it returns false.

Example
print setUpExtraction (current Module, "Formal mod", "DOORS Links")

extractAfter

Declaration

void extractAfter (Object source)

Operation

Extracts the marked-up object source to a new object after the current object in the formal module as specified by
setUpExtraction.

If the extraction has been incorrectly set up, the function displays a run-time error message is displayed and performs no

extraction.

If the extraction is successful, the new object in the formal module becomes the cutrent object.

DXL Reference Manual

346

Example

Module desc = create("Desc mod", "descriptive module", "D", 1, "c:\\info.txt")

Object obj=markUp (current Object 2,22)

edit "Formal module"

setUpExtraction (desc, "Formal module", "Link module")
extractAfter (obj)

extractBelow

Declaration

void extractBelow (Object source)

Operation

Performs the same operation as extractAfter, but inserts the new object below the current object in a formal module.
Example

Module desc = create ("Desc mod", "descriptive module", "D", 1, "c:\\info.txt")

Object obj=markUp (current Object 2,22)

edit "Formal module"

setUpExtraction (desc, "Formal module", "Link module")
extractBelow (obj)

Recently opened modules

This section defines DXL functions to access and manipulate the list of recently opened modules.

recentModules

recentModules is a new data type representing the list of recently opened modules.

addRecentlyOpenModule(ModuleVersion)

Declaration
void addRecentlyOpenModule (ModuleVersion ModVer)

Operation

Adds an entry into the recently opened modules list for the supplied module version.

DXL Reference Manual

347

addRecentlyOpenModule(string)

Declaration

void addRecentlyOpenModule (string)

Operation

Constructs a module version from the supplied string, then adds an entry in the recently opened modules list for that
module version.

removeRecentlyOpenModule(ModuleVersion)

Declaration

void removeRecentlyOpenModule (ModuleVersion ModVer)

Operation

Removes the entry for the supplied module version from the recently opened modules list.

for {string|ModuleVersion} in recentModules

Operation

Loops through the list of recently opened modules and returns the string representing uniquelD, including baseline version
string, or ModuleVersion, for each module.

Syntax

for {str|mv} in recentModules do {

where:
str is a variable of type string
mv is a variable of type ModuleVersion
recentModules is the list of recently opened modules
Example

// This example loops through the list of recently opened modules. It checks for
// the presence of two modules, if the first is found it is removed, if the
//second is found it is added.

ModuleVersion modl = moduleVersion ("00000023")

DXL Reference Manual

348

ModuleVersion mod2 = moduleVersion ("00000021")

ModuleVersion mod

bool foundl = false
bool found2 = false

for mod in recentModules do {

if (mod == modl) {
foundl = true
} else if (mod == mod2) {

found2 = true

if (foundl) {

removeRecentlyOpenModule modl

if (!found2) {

addRecentlyOpenModule mod2

Module Properties

ModuleProperties

ModuleProperties isanew data type representing the properties of a module. It consists of type definitions, attribute
definitions, and module attribute values. As with object and module types the . (dot) operator can be used to extract
attribute value

DXL Reference Manual

349

getProperties

Declaration

string getProperties (ModuleVersion mv, ModuleProperties &mp)

Operation

Loads type definitions, attribute definitions and module attribute values from the specified ModuleVersion into the
specified ModuleProperties.

delete(ModuleProperties)

Declaration
void delete (ModulePropertiesé&)

Operation

Deletes the supplied moduleProperties structure. If not called after a call to getProperties, the memory will only be released

after the context is released.

find(attribute definition in ModuleProperties)

Declaration

AttrDef find(ModuleProperties mp, string AttrName)

Operation

Returns the attribute definition from the specified ModuleProperties whose name matches the supplied string.

for string in ModuleProperties

Syntax

for str in modprops do {

where:
str is a variable of type String
modprops is a variable of type

ModuleProperties

DXL Reference Manual

350

Operation

Assigns str to be the name of each successive module atttibute in modprops.

for AttrType in ModuleProperties

Syntax

for at in modprops do {

where:
at is a variable of type AttrType
modprops is a variable of type
ModuleProperties
Operation

Assigns at to be each successive module attribute type definition in modprops.

Example
ModuleProperties mp

ModuleVersion mv

string mname = "/My Project/Modulel"
string s

mv = moduleVersion (module mname)
string errl = getProperties (mv, mp)

if (!'null errl) {

print errl "\n"

AttrType at

print "Module Types: \n"

DXL Reference Manual

for at in mp do {

print "\t - " (at.name) "\n"

print "\nModule Attributes: \n"
for s in mp do {

print "\t - " s " : "

val = mp.s""

print val "\n"

DXL Reference Manual

351

352

DXL Reference Manual

Chapter 18
Electronic Signatures

This chapter contains the following topics:
* Signature types

* Controlling Electronic Signature ACL

e Electronic Signature Data Manipulation

* Examples

Signature types

struct Signaturelnfo {}

A new type representing signature information.

struct SignatureEntry {}

A new type representing individual signatures. A SignatureEntry is aggregated into exactly one SignatureInfo
object.

Controlling Electronic Signature ACL

All access control operations operate on the Electronic Signature information that has been read from the database.
Therefore, read operations return results reflecting what was in effect when the data was last refreshed from the database.
The data is refreshed by calling getSignatureInfo.

Write operations might result in changes to the access controls, but the access control perms do not commit those changes
to the database. Instead, the DXL programmer must explicitly save any changes in order for them to be committed.

SignaturelnfoSpecifier___ specifier(Signaturelnfo)

Declaration

SignatureInfoSpecifier specifier(Signaturelnfo si)

DXL Reference Manual

353

354

Operation

This converter has a Ref implementation. It is an interface selector. It is used for getting and setting permissions for users to
change the signature label specifier type for a baseline It uses the same perms that are used for setting permissions to change
the SignatureInfo itself (the rest of the signature configuration). The label specifier is an enumerated type defined in
the module, which can have values like signed off, rejected, etc.

For example, if you have a SignatureInfo variable, say sigInfo, which has been initialized using
getSignaturelInfo, to give you a handle on the signature configuration for a particular baseline, then you get access
controls on the signature list using:

e string username

e string access

e AccessRec ac = get(sigInfo, username, access)
Access controls on the label specifier can be retrieved using:

e AccessRec ac2 = get(specifier sigInfo, username, access)

hasPermission(Signaturelnfo, Permission)

Declaration

bool hasPermission (SignatureInfo si, Permissioné& p)

Operation

Returns true if the current user has permission p to the Signatory ACL of the SignatureInfo object si.

hasPermission(SignaturelnfoSpecifier__, Permission)

Declaration

bool hasPermission(SignatureInfoSpecifier sis, Permission& p)

Operation

Returns true if the current user has permission p to the Specifier ACL of the SignatureInfo object si. The
specifier () permis used to casta SignatureInfo objectinto a SignatureInfoSpecifier object.

hasPermission(string, Signaturelnfo, Permission)

Declaration

bool hasPermission(string name, SignatureInfo si, Permissioné& p)

Operation

Returns true if the string name has permission p to the Signatory ACL of the SignatureInfo object si.

DXL Reference Manual

355

hasPermission(string, SignaturelnfoSpecifier__, Permission)

Declaration

bool hasPermission(string name, SignaturelInfoSpecifier sis, Permission& p)

Operation

Returns true if the string name has permission p to the Specifier ACL of the SignatureInfo object si. The
specifier () permis used to casta SignatureInfo objectinto a SignatureInfoSpecifier object.

::do(AccessRecé&, Signaturelnfo, void)

Declaration

void ::do(AccessRec& ar, SignaturelInfo si, void)

Operation

Tterator over Signatory ACL of the SignatureInfo object si.

::do(AccessRecé&, SignaturelnfoSpecifier__, void)

Declaration

void ::do(AccessRecé& ar, SignaturelInfoSpecifier sis, void)

Operation

Iterator over Specifier ACL of the SignatureInfo object si.

set(Signaturelnfo, Permission, string name)

Declaration

string set (SignatureInfo si, Permission& p, string name)

Operation

Sets the Signatory ACL so that string name has Permission p.

set(SignaturelnfoSpecifier__, Permission, string name)

Declaration

string set(SignatureInfoSpecifier sis, Permission& p, string name)

DXL Reference Manual

356

Operation

Sets the Specifier ACL so that string name has Permission p.

unset(Signaturelnfo, string name)

Declaration

string unset (SignatureInfo si, string name)

Operation

Sets the Signatory ACL so that string name has the default access.

unset(SignaturelnfoSpecifier__, string name)

Declaration

string unset (SignatureInfoSpecifier sis, string name)

Operation

Sets the Specifier ACL so that string name has the default access.

unsetAll(Signaturelnfo)

Declaration

string unsetAll (SignaturelInfo si)

Operation

Sets Signatory ACL so that all agents have the default access

unsetAll(SignaturelnfoSpecifer)

Declaration

string unsetAll (SignatureInfoSpecifer sis)

Operation

Sets the Specifier ACL so that all agents have the default access

AccessRec get(Signaturelnfo, string name, string& error)

Declaration

AccessRec get (SignatureInfo si, string name, string& error)

DXL Reference Manual

357

Operation

Returns the access record from the Signatory ACL for string name. Returns a non-null string if there is an ertor.

Electronic Signature Data Manipulation

getSignaturelnfo(Signaturelnfo si&, ModName_ document, int major, int minor, string suffix)

Declaration

string getSignaturelnfo(SignatureInfo si&, ModName document, int major, int
minor, string suffix)

Operation

Returns in s1 (destructively modifying its contents) a signature information object on the specified baseline document
(module, with version information). In case of error, a non-null string will be returned, otherwise the null string will be
returned.

If the baseline does not exist, this generates an etror.

If the baseline does exist, a valid SignatureInfo object will be assigned to si and populated with data read from the
database. The isConfigured () method will return true. If the baseline does not have a SignatureInfo object
associated with it, a new one is created. The isConfigured () method returns false, and the SignatureInfo
will contain some default values which are dependant on the last configuration specified for that module.

If there is signature information contained in the database for this baseline, that data will be read from the database and si
will then reflect that data, at the time of the call to getSignatureInfo. Changes subsequently made to the database by
other sessions will not be reflected in s1 until a further call to getSignatureInfo is made.

Since this perm destructively modifies the contents of s1, any changes that have been made to si (for example, a call to
setLabelSpecifier), are lost. Changes to a SignatureInfo object might be committed to the database by the
save perm.

isBaselineSignatureConfigured(Signaturelnfo)

Declaration

bool isBaselineSignatureConfigured (SignatureInfo si)

Operation

Returns whether the Signaturelnfo has been configured (if signature Access Controls or signatures have been saved for the
associated baseline). See getSignatureInfo () for more details.

Note: This perm does not refresh the SignatureInfo object from the database.

DXL Reference Manual

358

getLabelSpecifier(Signaturelnfo)

Declaration

string getlLabelSpecifier (SignatureInfo si)

Operation

Returns the signature label specifier. Does not refresh the signature information from the database.

setLabelSpecifier(Signaturelnfo si, string newLabel)

Declaration

string setlLabelSpecifier (SignatureInfo si, string newLabel)

Operation

Sets the signature label specifier of the supplied s to be the supplied newLabe 1. This might fail and return a non-null
error message if the current user does not have modify access conferred by the Specifier ACL.

This change to the label specifier is not committed to the database until the save (SignatureInfoé&) method is
called.

appendSignatureEntry(Signaturelnfo si, string label, string comment)

Declaration

string appendSignatureEntry(SignaturelInfo si, string label, string comment)

Operation

Appends the signature of the current user to the database signature information of the baseline associated with si. This
perm is only available when there is a user interface. It will return an error string otherwise. It prompts the user to reconfirm
their user name and password, and if this reconfirmation is successful, appends and commits this new signature entry to any
existing signatures that might be present in the database.

The label argument will be stored with the signature, and might be used to classify the signature. The baseline signature
DXL constrains the user to select the label from the enumeration values of the module’s label specifier type.

The labelOptions argument is intended to contain a newline-separated list of labels available to the user at the time of
sign off, as enforced by the calling DXL code.

The comment argument is intended to store any comments that the signatory wishes to record with the signature.
This perm returns an error when Rational DOORS is running in batch mode.

A side-effect of this perm is to refresh si (as would getSignatureInfo) so that it reflects the data that has been
committed to the database. As a consequence, any SignatureEntry objects derived from si will be invalidated. Also,
any non-committed changes to s1 will be lost (use the save perm to commit changes before appending a signature).

Since this operation refreshes s1, it is possible that the right to sign a baseline will be lost due to a change to the Signatory
ACL. In this case an error message will be returned.

DXL Reference Manual

359

save(Signaturelnfo si, int &code)

Declaration

string save (SignatureInfo si, int é&code)

Operation

Save signature information si to the database. Returns a non-null string if it fails, in which case the value of code will be set
to indicate the reason for failure.

On success, this perm writes the specified signature information to the database. Any changes that were made to this
signature information since it was refreshed (via getSignatureInfo) will be committed to the database.

It is not necessaty to call save in order to commit changes made by calls to appendSignatureEntry. This perm
commits those changes before it returns.

Changes made to signature information that do require an explicit call to save () are:
e setlLabelSpecifier()
Any change to access controls
Returned error codes:
* out of sequence commit
* other error

An out-of-sequence commit code arises when an attempt is made to commit changes based on an out-of-date read of the
signature information. The code will be set to "2" in all other failure cases.

A side-effect of this perm is to refresh s1 (as would getSignatureInfo) so that it reflects the data that has been
committed to the database. As a consequence, any SignatureEntry objects derived from si will be invalidated.

::do(SignatureEntry&, Signaturelnfo, void)

Declaration

void ::do(SignatureEntry& sigentry, SignaturelInfo si, void)

Operation
Tterator over each signature entry in the SignatureInfo object si. The signature entries so obtained are read-only.

The entities will be enumerated in the order in which they were appended to the SignatureInfo.

Note: This order is independent from the stored dates of the entries.

The signature entries so obtained will be invalidated by execution of any of the following perms on the same
SignatureInfo object

e getSignaturelnfo
* save

* appendSignatureEntry

DXL Reference Manual

360

As a result, these should not be called when SignatureEntry objects remain in scope.

getUserName(SignatureEntry)

Declaration

string getUserName (SignatureEntry sigentry)

Operation

Returns the signatory’s user name for the given signature entry.

getUserFullName

Declaration
string getUserFullName (SignatureEntry sigentry)

Operation

Returns the signatory’s full user name for the given signature entry.

getEmail(SignatureEntry)

Declaration

string getEmail (SignatureEntry sigentry)

Operation

Returns the e-mail address of the signatory for the given signature entry.

Date getDate(SignatureEntry)

Declaration
Date getDate (SignatureEntry sigentry)

Operation

Returns the signing date for the given signature entry.

Note: This function returns the GMT date/time of the signature and, when formatted to a string, will show the signature
time in the time zone of the viewer, not of the signatory.

DXL Reference Manual

361

Date getLocalDate(SignatureEntry)

Declaration

Date getLocalDate (SignatureEntry sigentry)

Operation

Returns the signing date of the given signature entry, offset to compensate for the time zones of the signatory and viewer.

getFormattedLocalDate(SignatureEntry)

Declaration
string getFormattedLocalDate (SignatureEntry sigentry)

Operation
Returns a string representing the date and time of the specified signature in the time zone of the signatory, not the current

viewert.

getLabel(SignatureEntry)

Declaration
string getLabel (SignatureEntry sigentry)

Operation

Returns the label, if any, for the given signature entry.

getLabelOptions(SignatureEntry)

Declaration
string getlLabelOptions (SignatureEntry sigentry)

Operation

Returns a formatted string representing the choices of label entry available to the signatory at the time of signing.

getComment(SignatureEntry)

Declaration

string getComment (SignatureEntry sigentry)

DXL Reference Manual

362

Operation

Returns the comment contained in a signature entry. This might be the empty string.

allAttributesReadable(SignatureEntry)

Declaration
bool allAttributesReadable (SignatureEntry sigentry)

Operation

Returns a boolean indicating if the signatory had read access to all attributes on the signed baseline.

getlsValid(SignatureEntry)

Declaration
bool getlIsValid(SignatureEntry sigentry)

Operation

Returns a boolean value indicating whether the signature hash is still valid for the stored signature entry. This might be used
to verify the integrity of signature data.

Examples

Add a signature to the latest baseline of the current module

// Example signatures code - add a signature to the latest baseline of the
current module.

Baseline thisBaseline = getMostRecentBaseline (current Module)
if (null thisBaseline || (null load(thisBaseline, true)))

{
warningBox "No baseline available"

halt

DB signatureDB
DBE addTypeChoice, addAddBtn, addCommentsText

DXL Reference Manual

SignatureInfo sigInfo

int enumCount = 0

int majorVersion = major (thisBaseline)
int minorVersion = minor (thisBaseline)
string suffix = suffix(thisBaseline)

//******k************‘k*********‘k*‘k*‘k**‘k*‘k**********************

void addAddCB (DBE x)

!/
!/
//

//
!/
{

DESCRIPTION : Callback for "OK" button on add signature
dialog. Calls appendSignatureEntry perm to prompt the user
to re-authenticate.

On error, presents a warning box to the user.

RETURNS : void

string labelString = get (addTypeChoice)
string commentString = get (addCommentsText)
string optionsString = ""
int 1
for (i = 0; 1 < enumCount; i++)
{

if (1 > 0)

{

optionsString = optionsString "\n"
}
optionsString = optionsString get (addTypeChoice, i)

string message =

appendSignatureEntry(sigInfo, labelString, optionsString, commentString)

if (!'null message)
{

warningBox (signatureDB, "Signature not added: " message "")

}

} // addAddCB

DXL Reference Manual

363

364

// First, read the SignatureInfo for the baseline..

string message = getSignaturelnfo(sigInfo,module (fullName current
Module) ,majorVersion,minorVersion, suffix)

if (!null message)
{
warningBox ("getSignatureInfo failed: " message "")

halt

// Create the dialog to allow the user to select a label and add a comment.
signatureDB = create ("Add Signature",styleFixed)

string labelType = getlLabelSpecifier(sigInfo)

AttrType at = null

enumCount = 0

// Get current list of labels from the current version of the module
if (!'null labelType)
{

Module currentVersion = read(fullName current Module, false)

if (!'null currentVersion)
{
at = find(current Module, labelType)
}
if (null at)
{
warningBox ("Cannot find label specifier type \"" labelType "\".")
halt
}
else if (at.type "" != "Enumeration")
{
warningBox ("Label specifier is not an enumerated type.")

halt

DXL Reference Manual

365

else

enumCount = at.size

string labelChoices[enumCount]

if (enumCount > 0)

{

// Get alternative labels from the enumerated type.
int index

for (index = 0; index < enumCount; index++)

{

labelChoices[index] = at.strings[index]

// Create the choice element for the user to select a label.
addTypeChoice = choice(signatureDB, "Signature Label: ",labelChoices, 0,20, false)
if (enumCount == 0)

{

inactive addTypeChoice

addCommentsText = text (signatureDB, "Comments:","",400,150,false)

addAddBtn = button (signatureDB, "OK",addAddCB, styleStandardSize)

show signatureDB

list signatures in the latest baseline

// Signatures example code : list signatures in the latest baseline

// of the current module

DXL Reference Manual

366

if (null current Module)
{
warningBox "Must run from an open module."

halt

Baseline b = getMostRecentBaseline (current Module)
if (null b || (null load(b,true)))
{
warningBox "No baseline available"
halt
}
string dummy[] = {}

DB signaturesDB = create("Baseline Signatures Example",styleFixed)

SignatureInfo signatureInfo = null

DBE timeCombo, sigListView, commentText
DBE labellLabel, labellList, closeBtn
string timeChoices[] = {"signatory's","current"}

DBE timeLabel

static int SIGNATORY COL = 0
static int DATE COL = 1

static int LABEL COL = 2

//‘k‘k*‘k*‘k*‘k**********‘k*******‘k*‘k*‘k*‘k***************************

void listSignature (SignatureEntry sigEntry, int i, bool localTimes)
// DESCRIPTION : adds an entry in the listView for a given signatureEntry
// RETURNS : void
{
insert (siglListView, i, getUserName (sigEntry),null, iconUser)

if (localTimes)

DXL Reference Manual

367

set (sigListView, i, DATE COL, (dateOf intOf getLocalDate (sigEntry)) "")

else

set (sigListView,i,DATE COL, (dateOf intOf getDate (sigEntry)) "")

}
set (sigListView, i, LABEL COL,getLabel (sigEntry))

//*******k***********************k*k***
void refreshlListView (void)
// DESCRIPTION : Populates sigListView with the info in signatureInfo
// RETURNS : void
// ERROR CONDITIONS : null signatureInfo - returns without any action
{
if (null signaturelInfo)

{

return
}
int i = get (timeCombo)
bool localTimes = (i == 0)

int entryNumber

empty sigListView

entryNumber = 0

SignatureEntry sigEntry

for sigEntry in signaturelInfo do

{
listSignature (sigEntry,entryNumber, localTimes)
entryNumber++

}

} // void refreshlListView (void)

DXL Reference Manual

368

//**

void closeDB (DB x)
// DESCRIPTION : close function for the signature dialog. Hides it.
// RETURNS : void
{
hide signaturesDB

halt

//**

void closeDB (DBE Xx)

// DESCRIPTION : close function for the signature dialog. Hides it.
// RETURNS : void

{

closeDB (signaturesDB)

//******************k**

void refreshSigsDB()

// DESCRIPTION : refreshes the signatures list with the signature info from
// the database, in the specified baseline.

// RETURNS : void

{

ModName thisModule = module (fullName current Module)

string message = getSignaturelnfo(signaturelInfo, thisModule, major (b),
minor (b), suffix (b))

set (commentText,"")
set (labelList,"")
if (!null message)
{

warningBox (signaturesDB, "Cannot display signatures for this baseline:
" message "\nThe baseline signature dialogue will be closed.")

DXL Reference Manual

closeDB (signaturesDB)

else

refreshlListView ()

}
} // refreshSigsDB

//******k************‘k*********‘k*‘k*‘k**‘k************************

void timeComboCB (DBE x)

// DESCRIPTION : Callback for the time-zone selection combo
// RETURNS : void

{

refreshListView ()

//**

void sigDeselectCB(DBE x, int selectedEntry)

// DESCRIPTION : Deselect callback for listView - null-op.
// RETURNS : void

{

}

//******************k**

void sigSelectCB(DBE x, int selectedEntry)
// DESCRIPTION : Selection callback for signatures list
// RETURNS : void
{
int indexScan = 0
SignatureEntry sigEntry

for sigEntry in signaturelInfo do

{

DXL Reference Manual

369

370

if (indexScan == selectedEntry)

{
set (commentText, getComment (sigEntry))
set (labellist, getLabelOptions (sigEntry))
break

}

indexScan++

}
} // sigSelectCB

// DEFINE MAIN DIALOG

siglListView = listView (signaturesDB, 0,405, 8, dummy)

set (siglListView, sigSelectCB, sigDeselectCB, sigSelectCB)
timeCombo=choice (signaturesDB, "Display time at",timeChoices, 0,9, false)
set (timeCombo, timeComboCB)

beside signaturesDB

timeLabel = label (signaturesDB, "location.")

below signaturesDB

commentText = text (signaturesDB, "Comments:","",100,100, true)

labellist = text(signaturesDB, "Available labels:","",160,100, true)

// BUTTONS

close (signaturesDB, true, closeDB)

realize signaturesDB
insertColumn (sigListView, SIGNATORY COL,"Signatory",150,iconNone)
insertColumn (sigListView, DATE COL,"Date / Time",150,iconNone)

insertColumn (sigListView, LABEL COL, "Label", 100, iconNone)

refreshSigsDB ()

show signaturesDB

DXL Reference Manual

Chapter 19

Objects

This chapter describes features that operate on Rational DOORS objects:

About objects

Object access controls
Finding objects

Current object

Navigation from an object
Object management
Information about objects
Selecting objects

Object searching

Miscellaneous object functions

About objects

Functions manipulate Rational DOORS objects via the Object data type. An important property of a Rational DOORS
formal module is that the objects within the module are structured as a tree; the functions for creating and navigating
objects therefore use the following tree terminology:

parent the object immediately above an object
child any object immediately below an object
sibling any object that shares a parent with another object

Object DXL can be found in nearly every example DXL program given in this manual or in the DXL library.

Object access controls

This section describes functions that report on access rights for an object. For all except the canRead (object)

function, the module must be open for exclusive edit.

DXL Reference Manual

371

372 ‘

canCreate(object)

Declaration

bool canCreate (Object o)

Operation

Returns true if the current Rational DOORS user has create access to object o; otherwise, returns false.

canControl(object)

Declaration
bool canControl (Object o)

Operation

Returns true if the current Rational DOORS user can change the access controls on object o; otherwise, returns false.

canRead(object)

Declaration
bool canRead (Object o)

Operation

Returns true if the current Rational DOORS user can read object o; otherwise, returns false.

canModify(object)

Declaration
bool canModify (Object o)

Operation

Returns true if the current Rational DOORS user can modify object o; otherwise, returns false.

canDelete(object)

Declaration
bool canDelete (Object o)

Operation

Returns true if the current Rational DOORS user can delete object o; otherwise, returns false.

DXL Reference Manual

373

canLock(object)

Declaration

bool canLock (Object o)

Operation

Returns true if the current Rational DOORS user can lock object o, which must be in a lockable section. It returns
false for the following conditions:

o is null

o is contained within a module that is currently open read-only

o is contained within a module that is cutrently open for exclusive edit
o is not contained within a formal module

the user does not have create or modify access to the object at the start of 0 ' s editable section

canUnlock(object)

Declaration
bool canUnlock (Object o)

Operation

Returns true if the current Rational DOORS user can unlock object o, which must be in a lockable section. It returns

false for the following conditions:

o is null

o is contained within a module that is cutrently open read-only

o is contained within a module that is currently open for exclusive edit
0 is not contained within a formal module

the user does not currently have o locked

Finding objects

This section defines functions that allow DXL programs to navigate through the objects in a module.

object(absno)

Declaration
Object object (int absno[,Module m])

DXL Reference Manual

374

Operation

Returns the object with the specified absolute number. If no module argument is supplied, the cutrent module is searched.

all
This function is used in a for loop operating on modules, as shown in the following syntax:
all (Module module)
Returns a handle for module (see the for object in all loop).

document
This function is used in a for loop operating on modules, as shown in the following syntax:
document (Module module)
Returns a handle for module (see the for object in document loop).

entire

This function is used in a for loop operating on modules, as shown in the following syntax:
entire (Module module)

Returns a handle for module (see the for object in entireloop).

module(containing object)

Declaration
Module module (Object o)

Operation

Returns the module that contains object o.

top

This function is used in for loops operating on projects and modules, as shown in the following syntax:
top (Module module)

Returns a handle for module (see the loops for history record in typeand for object in top).

DXL Reference Manual

375

for object in all

Syntax
for o in all (module) do {
}
where:
o is a vatiable of type Object
module is a variable of type Module
Operation

Assigns the variable o to be each successive object in module. It includes table and row header objects and the cells, unless
a filter is defined.

This loop respects the current display set; an object is only returned if it is displayed under the cutrent filter, level setting,
and so on. However, table header objects are always accounted for, even if the table is not visible in the current display due
to a filter.

Deleted objects are included when they are visible and excluded when they are not visible. This is the case for all deleted
objects except deleted table header objects, which are always displayed. Object numbering depends on whether deleted
objects are displayed. If they are displayed, they are numbered. If they ate not displayed, they are not numbered.

Example
Object o

for o in all current Module do {
print identifier o "\n"

for object in entire

Syntax

for o in entire (module) do {

}

where:
o is a variable of type Object
module is a variable of type Module

DXL Reference Manual

376

Operation

Assigns the vatiable o to be each successive object in module regardless of its deleted state or the current display set. It
includes table and row header objects and the cells.

for object in document

Syntax

for o in document (module) do {

where:
o is a vatiable of type Object
module is a vatiable of type Module
Operation

Assigns the variable o to be each successive object in module. Itis equivalent to the for object in module loop,
except that it includes table header objects, but not the row header objects nor cells.

Example

Object o

for o in document current Module do {
print identifier o "\n"

for object in module

Syntax

for o in module do {

where:
o is a variable of type Object
module is a variable of type Module
Operation

Assigns the vatiable o to be each successive object in module in depth first order, including the cells only of any Rational
DOORS native tables. Depth first order is the order in which objects are displayed down the page in a formal module.

DXL Reference Manual

377

This loop respects the current display set; an object is only returned if it is displayed under the current filter, level setting,
and so on. Deleted objects are included when they are displayed and excluded when they are not displayed. Object
numbering depends on whether deleted objects are displayed. If they are displayed, they are numbered. If they are not
displayed, they are not numbered.

Example
Object o

for o in (current Module) do
print (o."Object Heading") "\n"

for object in object

Syntax

for o in parent do {

}

where:
o is a vatiable of type Object
parent is an object of type Object

Assigns o to each successive child of object parent.

This loop ignores filters, such that even if objects are filtered, they are still returned by this function. Deleted objects are
included when they are displayed and excluded when they are not displayed.

Example
Object o
Object po = current

for o in po do {
print (o."Object Heading") " is a child of "
print (po."Object Heading") "\n"

for object in top

Syntax

for o in top (module) do {

DXL Reference Manual

378

where:
o is a variable of type Object
module is a variable of type Module

Assigns o to each successive top-level object in module, including table headers. Top-level objects are those at level 1.

This function accesses all top level objects regardless of the current display set, which is different from the for object
in module loop. Deleted objects are included, if they are displayed. Object numbering depends on whether deleted
objects are displayed. If they are displayed, they are numbered. If they are not displayed, they are not numbered.

Example
Object o
Module m = current

for o in top m do {
print o."Created On" "\n"

Current object

This section defines functions that are concerned with getting or setting the current object in a Rational DOORS module.

Setting current object

The assignment operator = can be used as shown in the following syntax:
current = Object object
Makes object the current object. See also, the current (object) function.

For large DXL programs, when you set the current object, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrentObject
becomes
(current ObjectRef) = newCurrentObject

Note that this cast only works for assignments to current. It is not useful for comparisons or getting the value of the current
object.

Example
current = first current Module
current = below current

DXL Reference Manual

379

current = create last below current

current(object)

Declaration

Object current ([Module m])

Operation

Returns a reference to the current object of module m, or the current module if m is omitted.
Example

Object o = current

Module m = edit "Car user reqgts"

Object o = current m

Navigation from an object

This section defines functions that allow navigation across a Rational DOORS module relative to a given object.

Specific object

The index notation, [], can be used to find a specific object, as shown in the following syntax:
Object ol[int n]
Module m[int n]

This returns the nth child of object o counting from 1, or the nth top-level child of module m, counting from 1.

gotoObject

Declaration

Object gotoObject (int absno, Module m)

Operation

Changes the display of the specified module so that the object with the specified absolute number is brought into the
display, and made current. This perm will change the current view in order to ensure that this object can be displayed.

Returns the Object with that absolute number.

DXL Reference Manual

380

Vertical navigation

Declaration

Object first (Object o)
Object last (Object o)
Object next (Object o)
Object parent (Object o)
Object previous (Object o)
Object first (Module m)

Object last (Module m)

Operation

The first five functions take an object argument o, and return an object, which is the object in the position relative to o as
stated by the function:

first returns the first child of object o
last returns the last child of object o
parent returns the parent of object o

previous returns the ptevious object from object o in a depth first tree search (the same
orderas for o in module do)

next returns the next object from object o in a depth first tree seatch (the same order
as for o in module do)

If navigation is attempted to somewhere where no object exists, returns null.

These functions are used for vertical navigation of a Rational DOORS module.

The last two functions return the first and last objects of module min a depth first tree search, that is the first and last
objects as they appear in a displayed module.

Example

This example finds objects relative to the passed object argument:

Object o = current

Object co = first o

if (null co) {
print "Current object has no children.\n"
} else {
if ((last o) == co) {
print "current has one child: " (o."Object
Heading") "\n"

DXL Reference Manual

if

if

if

if

}

print (identifier
parent co)

(null o[3])
print "current object
child\n"

(null previous o)
print "Current object

(null next o)
print "Current object

('null next o) {

o) " == " (identifier
" \nll

does not have 3rd

is first in module.\n"

is last in module.\n"

Object here = previous next o

print (identifier o)

and " (identifier

here) " are the same\n"

This example finds objects in the current module:

Object ol = first current

Module

Object 02 = last current Module

int count=1

while (ol != 02) {
count++
ol = next ol

}

print count " objects displayed in module\n"

ol

= (current Module) [3]

// get 3rd top level object

print identifier ol

Horizontal navigation

These functions are similar to the vertical navigation functions, but take as an argument a call to the function sibling,

which returns a handle to allow navigation between sibling objects (children of the same parent).

Declaration

Object first(sibling(Object o))

Object last(sibling(Object o))

Object next(sibling(Object o))

Object previous(sibling(Object o))

DXL Reference Manual

381

382

Operation

These functions return an object at the cutrent level of hierarchy: first siblingand last sibling return the
first and last objects. Function first sibling works with the current display set, so hierarchies might disappear as the display
set changes during navigation.

The functions are used for horizontal navigation of a Rational DOORS module.

Example
Object o = current
Object po = parent o

if ((null previous sibling o) &&
(null next sibling o)) {
print (o."Object Heading") " is the only
child of "™ // -(po."Object Heading") "\n"

print "and " (identifier first sibling o) "
== " //- (identifier first sibling o) " ==
" (identifier o) "\n"

Object management

This section defines the functions for creating, moving and deleting objects.

Note: The creation of tables, table rows, columns and cells is handled by special-purpose functions, which are described
in “Tables,” on page 819.

create(object)

Declaration

Object create (Module m)

Object create (Object o)

Object create(after (Object o))

Object create (before (Object o))
Object create(below (Object o))

object create(first (below (Object 0)))

Object create(last (below (Object 0)))

DXL Reference Manual

Operation

These functions create an object, whose position is controlled by the argument passed to the function, as follows:

Argument syntax New object is

Module m The first object in module m; any existing objects at level 1
are moved after the new object

Object o At the same level and immediately after the object o

after (Object o) At the same level and immediately after the object o (same
as without after)

below (Object o) The first child of object o

first (below (Object The first child of object o (same as without first)
o))

last (below (Object 0)) The last child of object o

In each case, the function returns the created object.

Example

This example creates newo at the same level and immediately after o.
Object o = current

Object newo = create o

which is equivalent to:

Object o = current

Object newo = create after o

This example creates newo at the same level and immediately before o.
Object o = current

Object newo = create before o

This example creates newo as the first child of o.
Object o = current

Object newo = create below o

which is equivalent to:

Object o = current

Object newo = create first below o
This example creates newo as the last child of o.
Object o = current

o = create last below o

DXL Reference Manual

383

384 ‘

move(object)

Declaration

void move (Object ol,
Object 02)

void move (Object ol,
below (Object 02))

void move (Object ol,
last (below (Object 02)))

Operation
These functions move an object to a position, which is controlled by the second argument passed to the function, as
follows:

Argument syntax Moves

Object o2 object 01 and its descendants to be immediately after object

o2

below (Object o02) object 01 and its descendants to be the first child below 02

last (below (Object object 01 and its descendants to be the last child below 02

o2))
Example

This example moves the last object in the module to be the first child of the first object:
Object p = first current Module

Object o = last current Module

move (o, below p)

This example moves the last object in the module to be the last child of the first object:
Object p = first current Module

Object o = last current Module

move (o, last below p)

canDelete

Declaration
string canDelete (Object o)

DXL Reference Manual

385

Operation

Returns null if object o can be deleted; otherwise returns a string "object has descendants". The
softDelete (object) function wotks on an object that has descendants.

flushDeletions

Declaration

void flushDeletions ()

Operation

Flushes any deletions performed by a DXL program. Normally Rational DOORS structures are only matrked for deletion
when the DXL program exits; this command makes any pending deletions happen immediately. Do not flush deletions
inside a for loop, because the loop might depend on the presence of an object.

hardDelete(object)

Declaration
void hardDelete (Object o)

void delete (Object o)

Operation

Removes object o; the object cannot be recovered with undelete following this operation. If the operation fails, returns

an error message (see also the canDelete function).

The form delete is provided for backwards compatibility only. The function hardDelete should be used for all new

programs.

sectionNeedsSaved

Declaration
bool sectionNeedsSaved (Object o)

Operation

Returns true if o is contained within an object hierarchy that has been modified but not saved. Otherwise, returns

false.

softDelete(object)

Declaration
void softDelete (Object o[, bool checkLinks])

DXL Reference Manual

386

Operation

Marks object as deleted. The object is not actually deleted until it is purged. Objects marked for deletion can be recovered
using the undelete (object) function. If the optional argument checkLinks is set to true, then an error will be given if
any of the objects children have incoming links.

undelete(object)

Declaration
string undelete (Object o)

Operation

Restotes object 0. On success returns null. On error, the error condition is returned to the user.

purgeObjects_

Declaration
string purgeObjects (Module mod)

Operation

Removes all soft deleted objects from module mod. Once executed, these objects cannot be recovered. The name ends in

>’ to discourage casual use.

purgeObject_

Declaration
string purgeObject (Object o)

Operation

Removes the specified soft-deleted object. Once executed, this object cannot be recovered. The name ends in'_' to

discourage casual use.

Information about objects

This section defines functions that return information about objects.

DXL Reference Manual

387

Object status

Declaration

bool canRead (Object o)
bool canWrite (Object o)
bool leaf (Object o)

bool isDeleted (Object o)
bool isFiltered(Object o)
bool isOutline (Object o)
bool isSelected(Object o)
bool isVisible (Object o)

bool modified (Object o)

Operation

Each function returns t rue for a condition that is defined by the function name:

Function Returns true if

canRead the user has read access to object 0

canWrite the user has write access to object o

leaf object o has no children, or has children objects that are deleted, but not
displayed

isDeleted object o has been soft deleted

isFiltered object o is accepted in the current filter

isOutline object o would appear in outline mode

isSelected object o is selected

isVisible object o is part of the current display set

modified object o has been modified since the last baseline of the module

getColumnBottom

Declaration
Object getColumnBottom (Object o)

DXL Reference Manual

388

Operation

Returns the bottom cell of the table column that contains o; otherwise, returns null.

getColumnTop

Declaration
Object getColumnTop (Object o)

Operation

Returns the top cell of the table column that contains o; otherwise, returns null.

level(object get)

Declaration
int level (Object o)

Operation

Returns the object level of object o. Level 1 is the top level of the module.

identifier

Declaration

string identifier (Object o)

Operation

Returns the identifier, which is a combination of absolute number and module prefix, of object o as a string.

number

Declaration

string number (Object o)

Operation

Returns the hierarchical object number (for example 2.1.1-0.1) of object 0 as a string.

Selecting objects

This section defines functions concerned with selecting objects.

DXL Reference Manual

389

getSelection

Declaration
Object getSelection (Module m)

void getSelection (Module m,
Object é&start,
Object &finish)
Operation

The first form gets the first object of a selection in module m.

The second form gets the current selection in module m, and sets object vatiables start and £1n1ish to the beginning
and end of it.

The start and end objects must be siblings.

setSelection

Declaration
void setSelection (Object o)
void setSelection (Object start,
Object finish)
Operation
The first form makes object o the start and finish of the current selection.

The second form sets the selection in the current module to begin at object start and end at object finish.

The start and end objects must be siblings.

deselect

Declaration
void deselect (Object o)

void deselect (Module m)

Operation

Deselects object o or the current selection in module m.

DXL Reference Manual

390 ‘

Object searching

This section defines functions that ate used by Find/Replace when highlighting an object, or an object’s attribute.

setSearchObject

Declaration

void setSearchObject (Object, int columnIndex)

Operation

Used by Find/Replace to mark either a specific attribute of the object in a column by surrounding it in a coloted box (the
same color as an outgoing link). This indicates which specific part of the object has been matched by the find operation. If
no valid/visible column is supplied, the object is matked by lines above and below the entite object.

Example
Object o = object (4)
int mainColumn = 1

setSearchObject (0o, mainColumn)

getSearchObject

Declaration

Object getSearchObject (Module, int &columnIndex)
Operation

Returns the object and column number of the highlighted attribute in the given module.
Example

Module m = current

int col

Object o = getSearchObject (m, col)

clearSearchObject

Declaration
void clearSearchObject (Object)

void clearSearchObject (Module)

DXL Reference Manual

391

Operation

Clears the highlighting put in place by setSearchObject. Currently, if an object is provided, that object need not be
the highlighted object, but this could change.

Example
Object o = current

clearSearchObject (0)

highlightText

Declaration
bool highlightText (Object, int start, int stop, int colIndex, bool isHeading)

Operation

Highlights text in the given module, in the given column from cursor position start to cursor position stop.
Example

//Highlights the first 10 characters of the current objects heading
highlightText (current Object, 10, 20, 1, true)

getinPlaceColumnindex

Declaration

int getInPlaceColumnIndex (Module)

Operation

Returns the column index where in-place editing is taking place.

Miscellaneous object functions

This section defines functions that affect the display of an object or use the clipboard.

inplaceEditing

Declaration

bool inplaceEditing (Module m)

DXL Reference Manual

392

Operation

This returns true if the module mis a formal module which is currently displayed and in-place edit mode is activated for a
displayed attribute.

object

Declaration

Object object (int i[,Module m])

Operation

Returns the object with the specified absolute number. If no Module argument is supplied, the current module is searched.
Example

Object o = object (4)

print identifier o

Clipboard general functions

Declaration

bool cut ()

bool copyFlat ()

bool copyHier ()

bool pasteSame ()

bool pasteDown ()

bool clearClipboard()
bool clipboardIsEmpty ()

bool clipboardIsTransient ()

Operation

Each function performs an action or status check defined by the function name as follows:

Function Action

cut Cuts the current object and all of its children, and stores
them on the clipboard. If the operation succeeds, returns
true; otherwise, returns false.

copyFlat Copies the current object to the clipboard. If the operation
succeeds, returns t rue; otherwise, returns false.

DXL Reference Manual

Function

Action

copyHier

pasteSame

pasteDown

clearClipboard

clipboardIsEmpty

clipboardIsTransient

Copies the current object and all of its children to the
clipboard. If the operation succeeds, returns true;
otherwise, returns false.

Pastes the clipboard contents after the current object, at the
same level as the current object. If the operation succeeds,
returns true; otherwise, returns false.

Pastes the clipboard contents one level down from the
cutrent object. If the operation succeeds, returns true;
otherwise, returns false.

Clears the clipboatd. If the operation succeeds, returns
true; otherwise, returns false. The Rational DOORS
object clipboard is also cleared when a module is closed.

Returns true if the clipboard is empty. Returns false if
the clipboard is not empty.

Returns true if the clipboard contains transient data (the
result of a cut or copy operation). Returns false if the
clipboard does not contain transient data.

splitHeadingAndText

Declaration

string splitHeadingAndText (Object)

Operation

Splits the Object Heading and Object Text of the given object. The heading will be moved to a new object, and the heading
of the given object will be emptied. The given object will be demoted to become the first child of the new object. Returns a

null string on success or an etror message on failure.

Example

Object o = current

string s = splitHeadingAndText (o)

if (null s){

print “Object split successfully.”

} else {

print “Error splitting object

”

DXL Reference Manual

393

394

getCursorPosition

Declaration

int getCursorPosition (Module, bool &isHeading)

Operation

If no attributes in the given module ate activated for in-place editing then -1 is returned. Otherwise it returns the position of
the cursor in the attribute currently being edited, if that attribute is the Object Heading then i sHeading will be set to
true, otherwise it will be set to false.

Example
bool isHeading

nww

print getCursorPosition (current Module, isHeading)

DXL Reference Manual

395

Chapter 20

Links

This chapter describes features that operate on Rational DOORS links:
* About links and link module descriptors
* Link creation

* Link access control

* Finding links

* Versioned links

¢ Link management

e Default link module

* Linksets

* External Links

* OSLC Link Discovery

* Rational DOORS URLs

About links and link module descriptors

The underlying database architecture of Rational DOORS links affects the way in which link DXL must be written. Link
modules store linksets, not actual links. Link modules can be placed in any folder in the hierarchy except the database root
folder, but they are normally placed in the folder containing the source module.

Links are stored in the module corresponding to the source of the link. This means that the user must have write permission
in the source module to create or modify a link.

This causes an asymmetry in DXL programs that handle links. Any code trying to access an incoming link must have the
source module loaded. Outgoing links are always immediately available in a formal module. However, the target module
might not be open, in which case the target function returns null.

Rational DOORS links are represented in DXL in by the Link data type.

A folder or project can specify the link modules to be used when a link is created between a pair of modules, the source of
which is in the folder. This source/target module pairing is called a link module desctiptor, which is represented by the
LinkModuleDescriptor data type.

Note: To obtainatype LinkModuleDescriptor handle, you mustuse the for 1ink module descriptor
in folder loop.

DXL Reference Manual

396

Each pairing contains the name of the link module, a description, and a boolean flag overridable. The
overridable flag specifies whether that link module must be used for links between the specified source and target
module. If overridableis false, newly created links must be in that link module; specifying a different link module at
the time a link is created causes a run-time error. If overridableis true, you can specify a different link module. The
modules referenced in the link module descriptor might but need not already exist at the time the link module is specified.

Link creation

This section defines the operators used to create links.

Link operators

Two operators create links, as shown in the following syntax:
Object source -> [string linkModuleName ->] Object target
Object target <- [string linkModuleName <-] Object source

The —> operator creates an outgoing link from object source to object target via link module 1inkModuleName.
If 1inkModuleName is omitted the link goes via the default link module (see “Default link module,” on page 412.

The <- operator creates an incoming link from object source to object target via link module 1inkModuleName.
If 1inkModuleName is omitted the link goes via the default link module.

These operators are also used in the for loops defined in “Finding links,” on page 397.

Example

This example creates a link from the current object of the current module to the first object of module target via the link
module tested by.

(current Object) -> "tested by" -> (first read "target")

This example creates a link to the current object of the current module from the first object of module source via the link
module tested by. Because links are stored in the source module, you must open source for editing to allow the link
to be created.

(current Object) <- "tested by" <- (first edit "source")

Link access control

This section describes a function that reports on access rights for links.

DXL Reference Manual

397

canDelete(link)

Declaration
bool canDelete(Link 1})

string canDelete (Link 1})
Operation

The first form returns t rue if the current Rational DOORS user can delete link 1. Otherwise, returns false.

The second form returns a null string if the current Rational DOORS user can delete link 1. Otherwise, it returns an error
message.

Finding links

This section defines for loops that allow DXL programs to navigate through the links in a module. Links are referred to by
the Link or LinkRef data type.

for all outgoing links

Syntax

for outLink in Object srcObject ->(string inkModuleName) do {

}

where:
outLink is a vatiable of type Link
srcObject is a vatiable of type Object
linkModuleName is a string variable
Operation

Assigns the variable outLink to be each successive outgoing link from object srcObject via link module named
linkModuleName. The string 1inkModuleName can be a specific link module name, ot the string " * " meaning
any link module.

Example
Link 1

DXL Reference Manual

398

for 1 in (current Object) -> "*" do {
string user = 1."Created By"
print user "\n"

for all incoming links

Syntax
for inLink in Object tgtObject<-(string linkModuleName) do {
}
where:
inLink is a variable of type Link or LinkRef
tgtObject is a vatiable of type Object
linkModuleName is a string variable
Operation

Assigns the variable 1nLink to be each successive incoming link arriving at object tgtObject via link module named
linkModuleName. The string 1inkModuleName can be a specific link module name, or the string " * " meaning any
link module.

Note: This loop only assigns to 1nLink incoming link values for which the source object is loaded; unloaded links are
not detected.

Example
Link 1

for 1 in current Object<-"*" do {
string user = 1."Created By"
print user "\n"

for each incoming link

Syntax

for LinkRef in Object tgtObject<-(string linkModuleName) do {

}

where:

LinkRef is a variable of type Link or LinkRef

DXL Reference Manual

399

tgtObject is a variable of type Object
linkModuleName is a string variable
Operation

Assigns the variable LinkRef to be each successive incoming link arriving at object tgtObject via link module named
linkModuleName. The string 1inkModuleName can be a specific link module name, or the string " * " meaning any
link module.

Iterates through all incoming link references including those from baselines and soft-deleted modules.

Note: This loop only assigns to LinkRef incoming link values for which the source object is loaded; unloaded links are
not detected.

Example

LinkRef 1r

for lr in current Object<-"*" do {
string name = fullName (source (lr))

print name "\n"

for all sources

Syntax

for srcModName in Object tgtObject<-(string linkModName) do {

}

where:
srcModName is a string variable
tgtObject is a variable of type Object
linkModName is a string variable
Operation

Assigns the vatiable srcModName to be the unqualified name of the source module of each successive incoming link
arriving at object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a
specific link module name, or the string " *" meaning any link module.

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

DXL Reference Manual

400

Example

This example prints the unqualified name of all the source modules for incoming links to the cutrent object:
Object o = current

string srcModName

for srcModName in each (o<-"*") do print srcModName "\n"

for each source

Syntax

for srcModName in Object tgtObject<-(string linkModName) do {

}

where:
srcModName is a string variable
tgtObject is a variable of type Object
1inkModName is a string variable
Operation

Assigns the variable srcModName to be the unqualified name of the source module of each successive incoming link
arriving at object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a
specific link module name, or the string " *" meaning any link module.

Includes links from baselines and soft-deleted modules, returning the name of the source module (without baseline version

numbers).

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

Example

This example prints the unqualified name of all the source modules for incoming links to the cutrent object:
Object o = current

string srcModName

for srcModName in each (o<-"*") do print srcModName "\n"

DXL Reference Manual

401

for all source references

Syntax

for srcModRef in Object tgtObject<-(string linkModName) do {

}

where:
srcModRef is a variable of type ModName
tgtObject is a variable of type Object
1inkModName is a string variable

Operation

Assigns the variable srcModRef to be the reference of the source module of each successive incoming link arriving at
object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a specific link
module name, or the string " *"" meaning any link module.

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

Example

Object o = current

ModName srcModRef

for srcModRef in (o<="*") do

read (fullName (srcModRef), false)

for each source reference

Syntax

for srcModRef in Object tgtObject<-(string linkModName) do {

}

where:
srcModRef is a variable of type ModName
tgtObject is a variable of type Object
linkModName is a string variable

DXL Reference Manual

402

Operation

Assigns the vatiable srcModRef to be the reference of the source module of each successive incoming link arriving at
object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a specific link
module name, or the string " *"" meaning any link module.

Includes links from baselines and soft-deleted modules.

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

Example

Object o = current

ModName srcModRef

for srcModRef in (o<="*") do

read (fullName (srcModRef), false)

for all link references

Syntax
for linkRef in Object tgtObject<-(string linkModName) do {

}

where:
linkRef is a variable of type LinkRef
tgtObject is a variable of type Object
linkModName is a string variable
Operation

Assigns the variable 1inkRef to be the link reference of each successive incoming link arriving at object tgtObject via
link module named 1inkModuleName. The string 1inkModuleName can be a specific link module name, or the
string " * " meaning any link module.

for link module descriptor in folder

Syntax
for linkModDesc in f do {

DXL Reference Manual

403

where:
linkModDesc is a variable of type LinkModuleDescriptor
£ is a variable of type Folder

Operation

Assigns the vatiable 1inkModDesc to be each successive link module desctiptor in folder £.

Versioned links

for all outgoing links

Declaration

for outLink in all Object srcObject-> (string linkModName) do {

}

where:
outLink is a variable of type Link
srcObject is a variable of type Object

linkModName is a vatiable of type string

Operation

This will iterate through all outgoing links, including links to baselines.

for all incoming links

Declaration

for inLink in all Object tgtObject<- (string linkModuleName) do {

}

where:
inLink is a variable of type Link or LinkRef
tgtObject is a variable of type Object

DXL Reference Manual

404

linkModuleName isa string variable

Operation

These will iterate through all incoming links, including links from baselines.

for all source links

Declaration

for srcModName in Object tgtObject<-(string linkModName) do {

}

where:
srcModName is a string variable
tgtObject is a vatiable of type Object

linkModName isa string variable

This would include links from baselines, returning the name of the source module, without baseline version numbers.

for all source link references

Declaration

for srcModRef in Object tgtObject<-(string linkModName) do {

}

where:
srcModRef is a variable of type ModName
tgtObject is a variable of type Object

linkModName isa string variable

Operation
This would include links from baselines.

DXL Reference Manual

405

sourceVersion

Declaration

ModuleVersion sourceVersion (Link|LinkRef 1)

Operation

This will return document version information for the source module of the specified Link or LinkRef. The new
ModuleVersion type gives access to ModName and Baseline information, via new perms detailed in the rest of

this section.

targetVersion

Declaration

ModuleVersion targetVersion (Link 1)

Operation

This will return document version information for the target module of the specified Link.

echoed outlinks

Declaration
bool echo (Link 1)

Operation

This returns true for an echoed outlink. An echoed outlink is any outgoing link in a module baseline which does not have
a corresponding inlink in the target module leading back to this baseline. Any outgoing link in a baseline will be an echoed
link unless it is a link to the same module or a link to another module in the same Baseline Set.

echoed inlinks

Declaration
bool echo (LinkRef 1)

Operation

This returns true for an echoed inlink. An echoed inlink is any incoming link in a module baseline which does not have a
corresponding outlink in the source module leading back to this baseline. Any incoming link in a baseline will be an echoed
link unless it is a link from the same module or a link from another module in the same Baseline Set.

DXL Reference Manual

406

getSourceVersion(Linkset)

Declaration

ModuleVersion getSourceVersion (Linkset 1s)

Operation

Returns some description of the version of the document in the source of a linkset 1s.

Link management

This section defines functions for managing links. Links are referred to by the Link or LinkRef data type.

addLinkModuleDescriptor

Declaration

string addLinkModuleDescriptor (Folder f£,
string source,
string target,
bool overrideable,
[bool mandatory, |
string linkmod,
string desc)

Operation

Creates a new link module desctiptor for the link between source and target, via link module 11inkmod, in folder £.
If the link module does not exist when this function is called, desc is the description of the link module created. Folder £
must be the folder that contains the module source.

If the operation succeeds, returns a null string; otherwise, returns an error message.

This function checks for duplicate source/target pairings. If the new link module descriptor would create a duplicate,
it returns a message.

The overrideable parameter specifies whether the link module descriptor will be overrideable.
The optional mandatory parameter specifies whether the link module descriptor will be mandatory.

For further information on link module descriptors, see “About links and link module descriptors,” on page 395.

DXL Reference Manual

407

removelLinkModuleDescriptor

Declaration

string removelLinkModuleDescriptor (Folder f, string s, string ¢t)

Operation

Deletes one link module descriptor defined for source s and target ¢, in folder £. If there is more than one s/t pair, the
duplicates remain.

If the operation succeeds, returns a null string; otherwise, returns an error message.

For further information on link module descriptors, see “About links and link module descriptors,” on page 395.

setLinkModuleDescriptorsExclusive

Declaration

void setLinkModuleDescriptorsExclusive (Folder f, ModName m, bool flag)

Operation

Setting the boolean variable f1ag to true has the same effect as selecting the only allow outgoing links as specified in
the above list option in the user interface.

Example
Folder f = current
ModName m = module ("/A Project/A Module")

setLinkModuleDescriptorsExclusive (f, m, true)

getLinkModuleDescriptorsExclusive

Declaration
bool getLinkModuleDescriptorsExclusive (Folder f, ModName)

Operation

Returns t rue if the only allow outgoing links as specified in the above list user interface option is set for the specified
document. The specified document must be a child of the specified folder.

getDescription

Declaration

string getDescription (LinkModuleDescriptor linkModDesc)

DXL Reference Manual

408

Operation
Returns the description of the link module in the specified link module descriptor.
If the operation succeeds, returns a string; otherwise, returns null.

For further information on link module descriptors, see “About links and link module descriptors,” on page 395.

getName

Declaration
string getName (LinkModuleDescriptor IlinkModDesc)

Operation
Returns the name of the specified link module descriptor.
If the operation succeeds, returns a string; otherwise, returns null.

For further information on link module descriptors, see “About links and link module descriptors,” on page 395.

getSourceName

Declaration

string getSourceName (LinkModuleDescriptor IinkModDesc)
Operation
Returns the name of the source in the specified link module descriptor.

If the operation succeeds, returns a string; otherwise, returns null.

For further information on link module descriptors, see “About links and link module descriptors,” on page 395.

getTargetName

Declaration
string getTargetName (LinkModuleDescriptor linkModDesc)

Operation
Returns the name of the target in the specified link module descriptor.
If the operation succeeds, returns a string; otherwise, returns null.

For further information on link module descriptors, see “About links and link module descriptors,” on page 395.

DXL Reference Manual

409

getOverridable

Declaration

bool getOverridable (LinkModuleDescriptor linkModDesc)
Operation
Returns whether the specified link module descriptor is overridable.

If the operation fails, returns null.

For further information on link module descriptors, see “About links and link module descriptors,” on page 395.

setOverridable

Declaration

void setOverridable (LinkModuleDescriptor linkModDesc, bool overridable)

Operation
If overridableis true, sets 1inkModDesc to overridable; otherwise sets 1 inkModDesc to not overridable.

If 1inkModDesc is already overridable, the call fails. You can obtain the value of the override setting using the

getOverridable function.

For further information on link module descriptors, see “About links and link module descriptors,” on page 395.

getMandatory

Declaration

bool getMandatory (LinkModuleDescriptor linkModDesc)

Operation
Returns whether the specified link module descriptor is mandatory.

If the operation fails, returns null.

setMandatory

Declaration
void setMandatory (LinkModuleDescriptor linkModDesc, bool mandatory)

Operation

If mandatory is true it sets 1 inkModDesc to mandatory; otherwise sets 1inkModDesc to not mandatory.

If 1inkModDesc is already mandatory, the call fails.

DXL Reference Manual

410‘

delete(link)

Declaration
void delete (Link 1)

Operation

Marks link 1 for deletion. The delete only takes effect when the DXL script ends, or when the f1ushDeletions
function is called.

module(link)

Declaration
Module module (Link 1)

Operation

Returns the link module handle of link 1, where linksets are stored as objects.

source

Declaration
string source ({Link|LinkRef} 1)
ModName source ({Link|LinkRef} 1I)

Object source(Link 1)

Operation

The first form returns the unqualified name of the module that is the source of 1, which can be of type Link or
LinkRef.

The second form returns a reference to the module that is the source of 1, which can be of type Link or LinkRef.

The third form returns the source object of link 1.

Example

Object o = current
LinkRef lref
ModName srcModRef

for lref in o<=-"*" do {
srcModRef = source lref
read (fullName (srcModRef), true)

DXL Reference Manual

411

sourceAbsNo

Declaration

int sourceAbsNo ({Link|LinkRef} 1)

Operation

Returns the absolute number of the object that is the source of 1, which can be of type Link or LinkRef.

target

Declaration

string target (Link 1)
ModName target (Link 1)
Object target (Link 1)

Operation
The first form returns the unqualified name of the module that is the target of link 1.
The second form returns a reference to the module that is the target of link 1.

The third form returns the target object of link 1. Returns null if the target module is not loaded, in which case your
program can load the module and re-run target.

Example
Object o = current
Link 1nk
ModName targetMod

for 1nk in o->"*" do {
targetMod = target 1lnk
read (fullName (targetMod), true)

targetAbsNo

Declaration
int targetAbsNo (Link 1)

Operation

Returns the absolute number of the object that is the target of 1.

DXL Reference Manual

412‘

Default link module

This section defines functions that operate on the default link module, which is used by drag-and-drop operations from the
Rational DOORS user interface.

getDefaultLinkModule

Declaration

string getDefaultLinkModule ([ModName srcRef,
ModName trgRef])

Operation

Returns the name of the default link module.

Example

print getDefaultLinkModule (module ("Functional
Requirements"),module ("User Requirements"))

setDefaultLinkModule

Declaration
void setDefaultlLinkModule (string linkModName)

Operation

Sets the name of the default link module.

Linksets

This section defines functions that apply to linksets. Linksets are referred to by the Linkset data type.

create(linkset)

Declaration

Linkset create ([Module linkMod,]
string source,
string target)

DXL Reference Manual

413

Operation

Creates a linkset between modules specified by the strings source and target, in the link module 1inkMod. If
1inkMod is omitted, creates a linkset in the current module. If the link module is open for display, the display updates to
show this linkset.

delete(linkset)

Declaration
void delete (Linkset 1s)

Operation
Deletes the linkset 1s. If the linkset is currently being displayed, the link module resets to displaying no linkset.

getSource getTarget

Declaration

string getSource (Linkset Is,
Object &o)

string getTarget (Linkset Is,
Object &o0)

Operation
The first function gets the current source object in linkset 15, and sets object variable o to it.
The first function gets the current target object in linkset 15, and sets object variable o to it.

Either function returns null if it succeeds; otherwise, returns an error message.

linkset

Declaration

Linkset linkset (Object 1s)

Operation

Converts a link module’s object 1s into a linkset handle, which can be used with the operations 1oad and delete.

Example

In this example, m must be a link module, which means that the objects it contains are linksets. To make this explicit the
function 1inkset is called.

Module m = current
Object o

Linkset 1ls = linkset o

DXL Reference Manual

414

delete 1s

load

Declaration
string load(Linkset 1s)

Operation

Load the linkset 1s. If the associated link module is open for display, the display updates to show this linkset.

setSource, setTarget

Declaration

string setSource(Linkset Is,
Object o)

string setTarget (Linkset Is,
Object o)
Operation

Sets either the source or the target object in the linkset 1, as displayed in the link module window matrix view, to be object
o. They depend on the module being visible.

If the operation succeeds, returns null; otherwise, returns an error message.

side1

Declaration
Object sidel (Module IinkMod)

Operation

Returns the object that is currently selected on sidel (the source side) of the linkset. Depends on the module being

visible.

Note: When using this perm just after opening the module 1inkMod, the refresh perm should be used beforehand

side2

Declaration
Object side2 (Module IlinkMod)

Operation

Returns the object that is cutrently selected on side?2 (the target side) of the linkset. Depends on the module being visible.

DXL Reference Manual

415

Note: When using this perm just after opening the module 1inkMod, the refresh perm should be used beforehand

unload

Declaration
void unload(Linkset 1s)
void unload (Module linkMod)

Operation

Unloads a loaded linkset specified by either the linkset handle 1s, if it is current, or the cutrent linkset of the link module
1linkMod.

getTargetModule

Declaration

ModName getTarget (Linkset 1s)

Operation

Returns the target module reference for the specified linkset.

External Links

ExternalLink

ExternalLink is a new data type representing the end of an external link. An external link is a one way link to the
resource it references. No corresponding link is created in the linked resource.

ExternalLinkDirection

Declaration

ExternallLinkDirection extLinkDir

Operation

Used to describe the direction of an external link. Valid values are inward and outward.

DXL Reference Manual

416

ExternalLinkBehavior

Declaration

ExternalLinkBehaviour extLinkBeh

Operation

Used to describe the behavior of an external link. Valid values are none and openAsURL.

ExternalLink current

Operation

Fetches the current external link. This perm will return non-null only when called from within attribute DXL executing

against an external link. In all other cases it will be null.

Example

External extLink = current

create(external link)

Declaration

string create (Object o,
string description,
string name,
ExternallinkDirection extLinkDir,
ExternallinkBehaviour extLinkBeh,
string body,
ExternallLinké& extLink)

Operation

Creates an external link on the specified object. The object must be locked and be modifiable by the current session. On
success, null is returned and the new link is returned in the ExternalLink& variable.

canDelete(external link)

Declaration
bool canDelete (ExternallLink extLink)

string canDelete (Externallink extLink)

Operation

This perm should always return false. If applied to a link from a baseline, an error string will be returned.

DXL Reference Manual

417

source

Declaration

Object source (Externallink extLink)

Operation

Returns information concerning the object having this external link for external links marked as out. For external links
marked as in, the perm returns null.

for all outgoing external links

Declaration
for extLink in (Object o) -> string ““
where:

extLink is a variable of type Externallink

Operation

Iterates over all external outgoing links on the object 0. The supplied string parameter must be the empty string.

for all incoming external links

Declaration
for extLink in (Object o) <- string “%
where:

extLink is a variable of type ExternalLink

Operation
Iterates over all external incoming links on the object 0. The supplied string parameter must be the empty string.
Example

The following example demonstrates the external link behavior. It must be executed from within a module that has at least
one object.

ExternallLink el,ell,el2,el3
//Create 3 external links

print create(current Object, "Descriptionl", "Namel", outward, none,
"https://www.ibm.com", ell)

print create (current Object, "Description2", "Name2", outward, openAsURL,
"https://www.ibm.com/software/support/", el2)

DXL Reference Manual

418

print create (current Object, "Description3", "Name3", inward, openAsURL,
"https://www.ibm.com/software/support", el3)

follow(ell) //This will fail - follow behavior is 'none'.
update ("IBM Web Site",name(ell),direction(ell), openAsURL, body(ell), ell)
follow(ell)

Object o = current
//Iterate over outward links
for el in o->"" do

{

print "Created on " el."Created On" " Last modified on " el."Last Modified
Ol’l" " \I'l"
}
//Iterate over inward links - changing External Link data
for el in o<-"" do

{
string elName = name (el)
string elDesc = description(el)
ExternallinkDirection elDir = direction(el)
ExternallinkBehaviour elBehaviour= behaviour (el)
string elBody = body(el)
if (elBehaviour == none)
{
elName = "New name"
}

update (elDesc, elName, elDir, elBehaviour, elBody, el)

for el in o<-"" do
{
string elName = name (el)

print "'" elName "' created on " el."Created On" " Last modified on "
el."Last Modified On" "\n"

DXL Reference Manual

419

if (behaviour (el) == openAsURL)

{
print "Opening up '" body(el) "' \n"
print follow(el) "\n"

update ("IBM Support Web Site",name(el),direction(el), behaviour(el),
body(el), el)

break

for all incoming and outgoing external links

Declaration
for extLink in (Object o) <-> string ““
where:

extLink is a variable of type ExternalLink

Operation

Tterates over all external links on the object o, both incoming and outgoing. The supplied string parameter must be the
empty string.

Example
To print the URLs of all Validated By links in the currently selected object.
Object o = current
ExternallLink el
string url
for el in all o<->"" do
{
url = body el

print url "\n"

DXL Reference Manual

420 ‘

OSLC Link Discovery

When OSLC (external) links are discovered the results are stored in DOORS in a database-wide cache so that future
sessions that open modules with those links open faster. When a user opens a module, the cache is checked first for any
external links. If the data in the cache has not yet expired then the cached external links are shown; else, a new query is
executed to discover any OSLC (external) links and the cache is then updated with the results. The cache has a default
expiry time of 5 minutes after which the external links are considered to be out of date. This expiry time can be modified.

getCachedExternalLinkLifeTime

Declaration
int getCachedExternallinkLifeTime ()

Operation

Returns the life time (expity time) of the cached external links in seconds.

setCachedExternalLinkLifeTime

Declaration

string setCachedExternallinkLifeTime (int lifetime)

Operation
Sets the life time (expiry time) of the cached external links to lifetime seconds.
If the value lifetime is zero then this will disable link discovery.

Returns an error if the user does not have the manage database privilege; otherwise, returns null.

discoverLinks

Declaration

string discoverLinks ({Object obj | Module m} [, bool reset])

Operation

Runs link discovery queries for the specified object or all objects and views of the specified module to find out possible
links.

If 'reset' is true, then existing errors and timestamps are cleared before starting link discovery. This essentially forces a fresh

link discovery.

Returns error message when it fails, returns NULL otherwise.

DXL Reference Manual

421

linksDiscovered

Declaration
bool linksDiscovered ({Object obj | Module m})

Operation

Returns true if link discovery is completed for the specified object or all objects and views of the specified module.

discoverLinksForViews

Declaration

string discoverLinksForViews (Module m [, bool reset])

Operation
Runs link discovery for all views of the specified module.

If 'reset' is true, then existing errors and timestamps are cleared before starting link discovery. This essentially forces a fresh

link discovery.

Returns error message when it fails, returns NULL otherwise.

linksDiscoveredForViews

Declaration

bool linksDiscoveredForViews (Module m)

Operation

Returns true if link discovery is completed for all views of the specified module.

discoverLinksForViewsAsync

Declaration

void discoverLinksForViewsAsync (Module m [, bool reset])

Operation

Runs link discovery for all views of the given module. This is an asynchronous operation so does not block.

If 'reset' is true, then existing errors and timestamps are cleared before starting link discovery. This essentially forces a fresh

link discovery.

DXL Reference Manual

422

discoverLinksAsync

Declaration

void discoverLinksAsync (Module m [, bool reset])

Operation

Runs link discovery queries for all objects and views of the module to find out possible links. This is an asynchronous
operation so does not block.

If 'reset' is true, then existing errors and timestamps are cleared before starting link discovery. This essentially forces a fresh
link discovery.

Rational DOORS URLs

getURL and getResourceURL

Declaration

string getResourceURL (Database d)

string getResourceURL (Module m)

string getResourceURL (ModName modName)
string getResourceURL (ModuleVersion modVer)
string getResourceURL (Object o)

string getResourceURL (Folder f£)

string getResourceURL (Project p)

string getResourceURL (Item 1)

Note : You can replace getResourceURL with getURL perm.
Operation
The gerResonrceURL perm returns the same value as the Rational DOORS URL displayed in the properties window.

The getURL perm is only available for compatibility reasons and does not return the dwaHost, dwaPort, and dwaProtocol
settings.

decodeURL

Declaration

string decodeURL (string url, string& dbHost, int& dbPort, stringé& dbName,
string& dbId, Itemé& i, ModuleVersion& modVer, int& objectAbsno)

DXL Reference Manual

423

Operation

This perm decodes the given Rational DOORS URL and returns in its output parameters enough details to validate the
URL url against the cutrent database and navigate to the item or module specified by that URL.

The output Item i and ModuleVersion modVer will be null if the URL refers to the database root node.
The output ModuleVersion will be null if the URL refers to a project or folder.
The objectAbsno variable will be -1 unless the URL specifies navigation to a particular object.

The function returns null if the URL is successfully decoded, or an error string if the referenced Item cannot be found or
the user does not have read access to the referenced Item.

This perm only works on legacy Rational DOORS URLs. This perm does not work when the re-director is enabled for
Rational DOORS, for example when the URLs have been transformed using the -utlPrefix switch in dbadmin.

In this case, convert the URLs to legacy URLs using the perm getLegacyURL ().

Example

The following example demonstrates the Rational DOORS URL behavior. The current example returns the details for the
current Object selected in a module. The second last line of the example can be changed to return details for the
corresponding item.

string urlInfo(string url)

// DESCRIPTION: Returns a string describing the target of the specified URL
string.

{
string result = null
ModuleVersion mv
int objectAbsno

Item i

string dbHost = null
int dbPort
string dbName

string dbID = null

result = decodeURL (url, dbHost, dbPort, dbName, dbID, i, mv, objectAbsno)

if (null result)

{
if (dbID != getDatabaseIdentifier)
{

DXL Reference Manual

424

result =
}
else if (null 1)
{

result = "Database: " dbName ""

}
else if (null mv)

{
// we're going to the top level node

result = (type i) ": "

else

// it's a module or baseline
Module m = null
if
{

(isBaseline (mv))

result = "Baseline: " (fullName mv)
" (description module mv)
}
else
{
result = "Module: " (fullName mv)
}
if (objectAbsno >= 0)

{
if
{

(isBaseline (mv))

m = load(mv, true)

DXL Reference Manual

(fullName i) ":

"The dbID does not match the current database."

(description i)

(versionString mv) "]:

(description module mv)

per the rights

string mode = getenv ("DOORSDEFOPENMODE")
if (mode == "READ ONLY" || mode == "r")
{

m = read(fullName (mv))

}

else if (mode == "READ WRITE SHARED" || mode == "s")

{

m = share (fullName (mv))

else

// Check the rights for the user and open the module as

if (canModify(i))

3
Il

edit (fullName (mv))

3
I

read (fullName (mv))

}
if (null m)
{
// Something went wrong

result = result "\nCould not open module "

else

current = m

Object o = gotoObject (objectAbsno, m, true)
if (null o)

{

(fullName mv) "."

DXL Reference Manual

425

426

result = result "\nCould not locate object " objectAbsno

else
{
result = result "\nObject " objectAbsno ""
}
if (!null o."Object Heading" && length(o."Object Heading" "")
> 0)

{

result = result "\nObject Heading: " o."Object Heading" ""
}
if (!'null o."Object Text" && length(o."Object Text" "") > 0)

{

result = result "\nObject Text: " o."Object Text"

}

return result

string obj url = getURL(current Object)

print urlInfo(obj url)

getlegacyURL

Declaration
string getlLegacyURL (object o)

Operation

This perm returns the legacy Rational DOORS URL. The legacy URL contains the protocol as "doots". This URL can then
be decoded using decodeURL.

Example

DXL Reference Manual

ModuleVersion mv

int objectAbsno

Item i

string dbHost = null
int dbPort

string dbName

string dbID = null

string objUrl = getURL (current Object)

string legacyUrl
string errorMsg

errorMsg = getLegacyURL (objUrl, legacyUrl)

if (!null errorMsgqg)

{

print errorMsg "\n"

else
{
errorMsg = decodeURL (legacyUrl, dbHost, dbPort, dbName, dbID, i, mv,
objectAbsno)
}
if(!'null errorMsq)
{
print errorMsg "\n"
}
else
{
print "Original URL - " objUrl "\nDB Host - " dbHost "\n"
print "DB Port - " dbPort "\nDB Name - " dbName "\nDB Id - " dbId
"\nAbsolute Number - " objectAbsno "\n"

}

validateDOORSURL

Declaration

string validateDOORSURL (string url)

DXL Reference Manual

427

428

Operation

This perm takes a Rational DOORS URL and performs a basic check that the URL structure is correct and required
clements ate present.

The function returns NULL if the URL is successfully validated, or an error string if there is a problem.

Example
Object o = current
string url = getURL o

string s = validateDOORSURL (url)

if (null s){
print “URL is valid”
} else {

print “Error in URL : ” s

isDefaultURL

Declaration

bool isDefaultURL(string URL)

Operation

Returns true if the supplied URL does not have an explicitly specified protocol.
Example

string url = "www.google.com"

string fullURL

if (isDefaultURL (url)) {
fullURL = "http://" url

}

print fullURL

getResourceURL

Declaration

string getResourceURL(Module | Object | Database__ | ModuleVersion| ModName___ | Folder | Project | Item)

DXL Reference Manual

429

Operation

Returns the resource URL of the passed in item.

getResourceURLConfigOptions

Declaration

void getResourceURLConfigOptions(string &dwaProtocol, string &dwaHost, int &dwaPort)

Operation

Gets the dwaProtocol, dwaHost, and dwaPort DBAdmin options configured for this database. The
dwaProtocol, dwaHost, and dwaPort parameters contain the values upon return.

decodeResourceURL

Declaration

string decodeResourceURL(string resourceURL, string &protocol, string& dbHost, int& dbPort, string& repositoryld,
string& dbName, string& dbld, Item&, ModuleVersion&, string& viewName, int& objectAbsno)

Operation

Breaks down a passed-in resource URL into its constituent parts and passes back the information as may be applicable into

the reference parameters.

Returns null on success, error message on failure.

DXL Reference Manual

430

DXL Reference Manual

431

Chapter 21

Attributes

This chapter describes the use of Rational DOORS attributes from DXL
e Attribute values

e Attribute value access controls

* Multi-value enumerated attributes

¢ Attribute definitions

e Attribute definition access controls

e Attribute types

* Attribute type access controls

* Attribute type manipulation

e DXL attribute

Attribute values

This section defines constants, operators and functions for working with attribute values. Attribute values are one of the
most important aspects of Rational DOORS.

Many example DXL programs in this manual or in the DXL library use attribute values.

maximumAttributeLength

Declaration

int maximumAttributeLength

Operation

Defines a constant, which equates to the maximum number of characters in a string attribute.

Attribute value extraction

Attribute names are available for use in combination with the . (dot) operator to extract the value of attributes. The syntax
for using the attribute names is:

(Object o). (string attrName)

(Module m) . (string attrName)

DXL Reference Manual

432

(Link 1).(string attrName)

(ModuleProperties mp) . (string attrName)

where:
o is an object of type Object
m is a vatiable of type Module
1 is a variable of type Link
mp is a variable of type ModuleProperties
attrName is a string identifying the attribute

This means that you can write:

o0."Object Heading"

m."Description"

1."Created By"

when you want to refer to the values of a named attribute of object o, module m or link 1.

A selected attribute can be assigned the value of a DXL variable (see “Assignment (to attribute),” on page 433). Conversely,
a DXL variable can be assigned the value of an attribute (see “Assignment (from attribute),” on page 432).

Concatenation (attribute)

The space character is the concatenation operator, which is shown as <space> in the following syntax:
attrRef <space> string s
Concatenates string s onto attrRef and returns the result as a string.

Unlike assignment, the attribute can be of any type, because Rational DOORS automatically converts the value to a string.

Example

string s = "Created On " (current
Object) ."Created On"™ "\n"

Assignment (from attribute)

The assignment operator = can be used as shown in the following syntax:
bool b = attrRef

int i = attrRef

real r = attrRef

string s = attrRef

Date d = attrRef

DXL Reference Manual

433

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1).(string attrName)

Operation
These assign the value of the referenced attribute at trRef to bool b, int i,real r,string s,orDate d.

Boolean assignment is slightly unusual in that it enables the retrieval of the value of an enumeration attribute with two
elements, such as an attribute of type Boolean. The first element in the enumeration maps to £alse; the second element
maps to true.

All assignments return the result of the assignment.

Example

Object o = current

Module m = current

Link 1

int i = o."Absolute Number"
real r

if (exists attribute "Cost")
r = o."Cost"

else
r = 0.0

string s = o."Created By"

Date d = o."Created On"

bool b = o."OLE"

print 1 " " r " " s "™ " d" " b "\n"

for 1 in o->"*" do {
string sl = 1l."Last Modified By"
print sl "\n"

}

string desc = m."Description"
print desc "\n"

int 12, i3

i3 = i2 = o."Absolute Number"

Assignment (to attribute)

The assignment operator = can be used as shown in the following syntax:

attrRef = bool b

DXL Reference Manual

434

attrRef = int 1

attrRef = real r

attrRef string s

attrRef = Buffer b

attrRef = Date d

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)
Operation
Assigns bool b, int i, real r,string s,Buffer b,orDate d to the attribute reference attrRef.

Again, boolean assignment enables the setting of an enumeration attribute that has two elements in its definition, such as an

attribute of type Boolean

Example

Object o = current

0."Object Heading" = "Front Matter"
o."Integer Attribute" = 2
o."Accepted" = false

canRead, canWrite(attribute)

Declaration

bool canRead (Module m,
string attrName)

bool canWrite (Module m,
string attrName)

bool canRead (attrRef)

bool canWrite (attrRef)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)

Operation

The first two forms return whether the current Rational DOORS user can read or write values of the attribute name

attrName in module m.

DXL Reference Manual

435

The third and fourth forms allow you to use the dot notation directly.

Example

// Test current user permission

Module m

const string ACreatedBy = "Created By"

if (!canWrite (m, ACreatedBy) &&
canRead (m, ACreatedBy)) {
print "I can only read.\n"

}

// Use dot notation

Object o = current

const string ACreatedBy = "Created By"

if (!canWrite o.ACreatedBy && canRead o.ACreatedBy) {
print "I can read the attribute but I cannot
write to it.\n"

type(attribute)

Declaration

string type (Module m,
string attrName)

string type (attrRef)

where attrRef is in one of the following formats:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

The first form returns the name of the type of the attribute named at t rName in module m.

The second form enables you to use the dot notation directly.

Example

// Use dot notation

print (type (current Object)."Object Heading") "\n"
// Use module

print (type (current Module,"Object Heading")) "\n"

DXL Reference Manual

436

for module attributes in module

Syntax

for attribute in attributes (module) do {

}

where:

attribute is a string variable

module is a variable of type Module
Operation

Assigns the string at tribute to be each successive attribute that is defined for module.
Example
string modAttrName

for modAttrName in attributes (current Module) do
print modAttrName "\n"

for object attributes in module

Syntax

for objAttrName in module do {

}

where:

objAttrName is a string variable

module is a vatiable of type Module
Operation

Assigns the string objAt trName to be each successive attribute that is defined for objects in module.

Example
string objAttrName

for objAttrName in (current Module) do print objAttrName "\n"

DXL Reference Manual

437

unicodeString

Declaration

string unicodeString (attrRef)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

Returns the value of the specified attribute as plain text. If the attribute contains rich text including characters in Symbol
font, then these characters are converted to the Unicode equivalents.

Example
Object o = current
string s = unicodeString (o."Object Text")

print s "\n"

getBoundedUnicode

Declaration

string getBoundedUnicode (attrRef, int maxSize)
where attrRef is in one of the following formats:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

Returns a plain text value derived as in unicodeString (attrRef), but limited to a maximum number of characters

as specified by the maxSize argument.

Example

Object o = current

string s = getBoundedUnicode (o."Object Text", 11)

print s "\n"

DXL Reference Manual

438 ‘

Attribute value access controls

This section desctibes functions that report on access tights for an attribute value.

canCreate(attribute)

Declaration

bool canCreate (Module m,
string attrName)

bool canCreate (attrRef)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)
Operation

The first form returns t rue if the current Rational DOORS user can create values of the attribute that is named

attrName in module m. Otherwise, returns false.

The second form enables you to use the dot notation ditectly.

canControl(attribute)

Declaration

bool canControl (Module m,
string attrName)

bool canControl (attrRef)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)
Operation

The first form returns true if the current Rational DOORS user can change the access controls on the attribute that is
named attrName in module m. Otherwise, returns false.

The second form enables you to use the dot notation directly.

DXL Reference Manual

439

canModify(attribute)

Declaration

bool canModify (Module m,
string attrName)

bool canModify (attrRef)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)
Operation

The first form returns t rue if the current Rational DOORS user can modify values of the attribute that is named

attrName in module m. Otherwise, returns false.

The second form enables you to use the dot notation ditectly.

canDelete(attribute)

Declaration

bool canDelete (Module m,
string attrName)

bool canDelete (attrRef)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)
Operation

The first form returns true if the current Rational DOORS user can delete values of the attribute that is named

attrName in module m. Otherwise, returns false.

The second form enables you to use the dot notation directly.

Multi-value enumerated attributes

This section defines functions that apply to multi-value enumerated attributes.

DXL Reference Manual

440

Assignment (enumerated option)

The assignment operators += and —= can be used as shown in the following syntax:
attrRef += string s
attrRef -= string s
where attrRef is in one of the following formats:
(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1) . (string attrName)

Operation

Adds or removes an enumerated option from the value of the attribute.

Example

This example adds "Australia" to the list of values of the attribute "Country" of the current object, and removes
"Borneo".

Object o = current

o."Country" += "Australia"

o."Country" —-= "Borneo"

isMember

Declaration

bool isMember (attrRef,
string s)

where attrRef is in one of the following formats:
(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1) . (string attrName)

Operation

Returns true if the option specified as s is present in the multi-value attribute.
Example

if (isMember ((current Object) ."Country", "Australia")) {

addRequirement ("Right-hand drive model
needed")

DXL Reference Manual

441

Attribute definitions

This section defines functions and a for loop that manipulate Rational DOORS attribute definitions. The fundamental
type that is used is At trDe f, which is a handle on an attribute definition.

Note: Reloading a module (for example, changing edit modes) in a DXL sctipt removes any attribute definition values

cutrently assigned to variables in that script. If a module is reloaded, reassign the attribute definitions.

Attribute definition properties

Properties are defined for use with the . (dot) operator and an attribute definition handle to extract information from an

attribute definition, as shown in the following syntax:

(AttrDef ad) .property

The following tables list the properties and the information they extract:

String property Extracts

dx1 DXL text of an attribute that uses DXL attribute.

name The name of an attribute definition.

typeName The name of the type of an attribute definition.

description The description of the attribute definition.

uri The URI of an attribute definition.

Boolean property Extracts

canWrite Whether the user can delete the attribute definition.

defval Whether the attribute definition is for an attribute that has a default
value.

dxl Whether the attribute definition is for an attribute that has its value
generated by DXIL..

hidden Whether the attribute definition is for an attribute that is hidden. This
function is provided only for forward compatibility with future
releases of Rational DOORS.

inherit Whether the attribute definition is for an attribute that is inherited.

module Whether the attribute definition is defined for the module.

DXL Reference Manual

442

Boolean property Extracts

multi Whether the attribute definition is of the multi-value enumeration
type.

nobars Whether the attribute definition is for an attribute that does not alter

change bars.

nochanges Whether the attribute definition is for an attribute that does not
change modification status attributes.

nohistory Whether the attribute definition is for an attribute that does not
generate history.

object Whether the attribute definition is defined for objects.
system Whether the attribute is system defined.
useraccess Whether users can update the value of the attribute.

For example, for a system attribute such as "Last Modified On" it
returns false, because users can never update it, regardless of access
controls. For an attribute such as "Object Heading" it returns t rue,
because users can update its value provided they have appropriate
access controls.

Any type property Extracts

type An AttrType for the attribute type of the attribute definition.
Default property Extracts

defval The default value for the attribute definition; for correct operation,

always assign the result to a variable of the correct type for the
attribute.

Example

This example uses string properties:

// name

AttrDef ad = find(current Module, "Object Text")
print ad.name // prints Object Text
// typeName

AttrDef ad = find(current Module, "Created On")

print ad.typeName // prints Date

DXL Reference Manual

// dx1

AttrDef ad = find(current Module, "DXL initialized attribute")

if (ad.dxl) {
string dx1lVal = ad.dxl
print dxlval "\n"

}

// useraccess
AttrDef ad
Module m = current

for ad in m do {
print ad.name "-" ad.useraccess "\n"

}

This example uses boolean properties:

// object

AttrDef ad = find(current Module, "Description")
print ad.object // prints false

// module

AttrDef ad = find(current Module, "Description")
print ad.module // prints true

// system

if (thisAttr.system) {
ack "System attribute: cannot delete"

}

// canWrite
AttrDef ad

Module m = current

for ad in m dof{
print ad.name "-" ad.canWrite "\n"

}

This example uses the property type:

AttrDef ad = find(current Module, "Description")
AttrType at = ad.type

print at.name // prints String

This example uses the property defval for a default value of type string

AttrDef ad = find(current Module, "Created Thru")

string def = ad.defval

print def // prints Manual Input

DXL Reference Manual

443

444

Concatenation (attribute definition)

The space character is the concatenation operator. All the individual elements of an attribute definition can be
concatenated.

create(attribute definition)

Syntax

AttrDef create ([module|object]
[property value]...
[(default defVal)]
attribute (string attrName))

Operation

Creates a new attribute definition called at t rName from the call to attribute, which is the only argument that must
be passed to create. The optional arguments modify create, by specifying the value of attribute properties. The
arguments can be concatenated together to form valid attribute creation statements.

The keywords module and object specify that the attribute definition that is being created applies to modules or
objects, respectively.

The default property specifies the default value for the attribute definition that is being created as defVal. This property
should always be specified within parenthesis to avoid parsing problems. The value must be given as a string, even if the
underlying type is different. Rational DOORS converts the value automatically.

As required, you can specify other properties. The defaults ate the same as the Rational DOORS user interface.

String property Specifies

dx1 The code that is associated with an attribute in dx1code.

type The type of the attribute definition as typeName.

description The desctiption of the attribute definition.

uri The URI of an attribute definition.

Boolean property Specifies

changeBars Whether the attribute definition that is being created alters change bars.
date Whether the attribute definition that is being created alters dates.
hidden Whether the attribute definition that is being created is hidden.

Note that this function is only provided for forward compatibility with future releases of
Rational DOORS.

DXL Reference Manual

single-valued attribute definition.

Boolean property Specifies

history Whether the attribute definition that is being created generates history.
inherit Whether the attribute definition that is being created is to be inherited.

multi A multi-valued attribute definition, if expression evaluates to t rue; otherwise a

Example

This example builds an attribute named "Count" which has a default value of 0:
create (default "0") attribute "Count"
This example builds an integer attribute named "Cost" which applies to the module:

create module type "Integer" attribute "Total Cost"

This example builds an integer attribute named "Cost" which applies to the objects in the module, but not the

module itself:
create object type "Integer" attribute "Cost"
This example uses some of the other attribute definition functions:

create module type "String" (default "Help") history true //-
changeBars false date false inherit true //=
hidden false attribute "Usage"

This example creates an "Integer" attribute definition called "Cost2", which applies only to objects:

create attribute "Cost2"

This example creates a multi-valued attribute definition "attribute name", which uses the enumeration type

"enumeration name" and sets its default to two values: valuel and value?2.

create type "enumeration name" (default "valuel\nvalue2") //-
multi true attribute "attribute name"

A newline character must be used to separate the different values.
This example defines code associated with attribute called "cost":
AttrDef ad = create object type "Integer" attribute "cost" //-

dx1l "int i = 10 \n obj.attrDXLName = i "

delete(attribute definition)

Declaration

string delete ([Module m,]

AttrDef ad)

Operation

Deletes the attribute definition ad from module m. If m is omitted, deletes ad from the current module.

DXL Reference Manual

445

448

Example

void deleteAttrDef (string s)
{

string err
AttrDef ad = find(current Module, s)
err = delete (ad)

if (err !="") ack err

}

deleteAttrDef "attribute name"

exists

Declaration

bool exists(attribute (string attributeName))

Operation

Returns t rue if the attribute named at tributeName exists in the current module.

Example

if (exists attribute "Cost")
print "Cost is already there.\n"

find(attribute definition)

Declaration

AttrDef find(Module m,
string attributeName)

Operation

Returns the attribute definition for the attribute named attributeName in module m.

Example

AttrDef ad = find(current Module, "Object Heading")

attributeValue

Declaration

bool attributeValue (AttrDef attrDef,
string s)

DXL Reference Manual

447

Operation
Returns true if the specified string contains valid data for the specified attribute definition. Returns false if the
specified string contains invalid data for the specified attribute.

isAttributeValuelnRange

Declaration

bool isAttributeValueInRange (AttrDef ad, attrRef)
where attrRef can be one of:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

If the value of the attribute at trRef is within the range defined for Attribute Definition ad, then return true.

Otherwise, return false.

Note: For attributes based on types that are not ranged, always returns true.

getBoundedAttr

Declaration

string getBoundedAttr (attrRef attrdef,
int number)

where attrRef is in one of the following formats:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

Returns the first number of characters of the value of attribute definition at trDef.

This is particularly useful when working with attribute values that could potentially be extremely large (for example,
encoded picture data) but the entire value is not required.

Example

Object o = current

print getBoundedAttr (o."Object Text", 3)

DXL Reference Manual

448

hasSpecificValue

Declaration

bool hasSpecificValue ({Link I1|Module m|Object o},
AttrDef attrDef)

Operation

Returns true if the attribute definition attrDef has a specific value for link 1, open module m, or object o. Otherwise,
returns false.

isVisibleAttribute

Declaration

bool isVisibleAttribute (AttrDef attrDef)

Operation

Returns true if the specified attribute is not a hidden attribute. Returns false if the specified attribute is a hidden
attribute.

Note: This only applies to object attributes. It return false when used with module attributes.

modify(attribute definition)

Declaration

AttrDef modify (AttrDef old,
[setproperty value,]
AttrDef new)

Operation

Modifies an existing attribute definition by passing it a new attribute definition. The optional second argument enables you
to set a single property, as follows:

String property Sets

setDefault The default string.

setDXL The attribute to DXL code contained in the string argument.
setName The attribute’s name in a string.

setDescription The attribute description.

uri The URI of an attribute definition.

DXL Reference Manual

Boolean property Sets
setBars Whether the attribute alters change bars.
setDates Whether the attribute alters dates.
setHidden Whether the attribute is hidden.
setHistory Whether the attribute generates history.
setInherit Whether the attribute is inherited.
setModule Whether the attribute definition is for modules.
setMulti Whether the attribute definition is a multi-valued enumeration type.
setObject Whether the attribute definition is for objects.
Locale property Sets
setLocale The attribute’s locale.

Example 1

AttrDef ad

create object type "Integer" attribute "cost"

ad = modify(ad, object type "Integer" attribute "Costing")

ad = modify(ad, setHistory, true)

ad = modify(ad, setDefault, "123")

ad = modify(ad, setURI, "http://www.webaddress.com")

Example 2

This example uses Locale properties

Locale loc
AttrDef ad

Modify (ad,

userLocale

find(current Module, "Object Text")

setLocale, loc)

for attribute definition in module

Syntax

for ad in {module|modProps} do {

DXL Reference Manual

449

450

where:

ad is a variable of type At trDef

module is a variable of type Module

modProps is a vatiable of type ModuleProperties
Operation

Assigns the attribute definition ad to be each successive definition present in the module module, or modProps,
provided the definition applies to either modules or objects.

Example
AttrDef ad

for ad in current Module do {
print "Attribute: " ad.name "\n"

for module level attribute definition in {Module|ModuleProperties}

Syntax

for ad in attributes {mod|modprops} do {

where:
ad is a variable of type At trDef
mod is a variable of type Module
modprops is a variable of type
ModuleProperties
Operation

Assigns ad to be the name of each successive module level attribute definition in the supplied Module, or
ModuleProperties.

Attribute definition example program

// attribute definition DXL example

DXL Reference Manual

/*
Example of Attribute Definition DXL
*/

void print (AttrDef ad) { // print out some information on ad

]

print ad.name ":
print "type \"" ad.typeName "\""

// does ad apply to objects?

print (ad.object ? " object " : "")
// does ad apply to modules?

print (ad.module ? " module" : "")
print (ad.inherit ? " inherit"™ : "")
// are values inherited?

AttrType typ = ad.type

if (typ.name == "Integer" && ad.defval) {
// print any default int value
int d = ad.defval
print " default " 4 ""

}

if (ad.dxl) {
string dxlVal = ad.dxl
print " isDxl \"" dxlval "\""
// does ad use DXL attribute?
}

print "\n"
} // print
// main program
// create two new attributes
create object type "Integer" attribute "Cost"
create module type "Integer" attribute "Total Cost"
AttrDef ad
// print module attribute definitions
print "Module attribute definitions:\n\n"

for ad in current Module do
if (ad.module)
print ad

// print object attribute definitions

print "Object attribute definitions:\n\n"

DXL Reference Manual

451

452

for ad in current Module do
if (ad.object)
print ad

For a larger example of the use of At trType, AttrDef and Rational DOORS attributes, see
$SDOORSHOME/1ib/dx1/utils/copyops . inc, which enables the copying of an attribute of an object in one
module to an object in another module. If the target module does not have the necessary attribute types and definitions,

they are automatically constructed.

Attribute definition access controls

This section describes functions that report on access rights for an attribute definition.

canCreateDef

Declaration
bool canCreateDef (AttrDef attrDef)

Operation

Returns true if the current Rational DOORS user has create access to the attribute definition attrDef.

canCreateVal

Declaration
bool canCreateVal (AttrDef attrDef)

Operation

Returns true if the current Rational DOORS user has create access to the value of the attribute definition at trDef.

canControlDef

Declaration
bool canControlDef (AttrDef attrDef)

Operation

Returns true if the current Rational DOORS user can change the access controls on the attribute definition at trDef.

DXL Reference Manual

453

canControlVal

Declaration
bool canControlVal (AttrDef attrDef)

Operation

Returns true if the current Rational DOORS user can change the access controls on the value of the attribute definition
attrDef.

canDeleteDef

Declaration
bool canDeleteDef (AttrDef attrDef)

Operation

Returns true if the current Rational DOORS user can delete the attribute definition a t t rDe f. Otherwise, returns
false.

canDeleteVal

Declaration
bool canDeleteVal (AttrDef attrDef)

Operation

Returns true if the current Rational DOORS user can delete the value of the attribute definition at t rDe f. Otherwise,

returns false.

canCreateAttrDefs

Declaration

bool canCreateAttrDefs (Module m)

Operation

Returns true if the current Rational DOORS user has create access for attribute definition in Module m..

DXL Reference Manual

454 ‘

Attribute types

This section defines the functions that manipulate the types of Rational DOORS attributes. The following types are used:
AttrType, which is a handle on an attribute type; and At trBaseType, which is a handle on an attribute type’s base

type.

AttrBaseType can have the following values:

Scalar Ranged attrDate
Ranged attrInteger
Ranged attrReal
Simple attrText
Simple attrString
Simple attrUsername
Aggregate Enumeration attrEnumeration

They are used for determining the base type of an attribute type, for example, you might have an attribute type called "1
to 10" whose base type is an integer but has limits of 1 and 10.

Ranged types can have a maximum and minimum value.

Attribute type properties

Properties are defined for use with the . (dot) operator and an attribute type handle to extract information from an attribute

type, as shown in the following syntax:

(AttrType at) .property

The following tables list the properties and the information they extract:

String property

Extracts

name

strings[n]

description

description|s]

The name of an attribute type.

provides access to the names of an enumerated attribute type; the nth
element (counting from 0). In the Rational DOORS user interface,
this is the ‘value’ of the enumerated type.

The description of the attribute type

The desctiptions of the values in an enumerated type.

DXL Reference Manual

455

Boolean property Extracts

canWrite Whether the user can delete the attribute type.

system Whether the attribute type is system defined.

Integer property Extracts

colors|[n] The nth element (counting from 0) of the array of colors that are used
colours|[n] in an enumeration attribute type.

maxValue The maximum value for an attribute type or tests for the presence of a

maximum value. Can also be of type Real or Date.

minvValue The minimum value for an attribute type or tests for the presence of a
minimum value. Can also be of type Real or Date.

size The number of elements of an enumerated type.

values [n] The nth element (counting from 0) of the atray of values used in an
enumeration attribute type. In the Rational DOORS user intetface,
this is the ‘related number’ of the enumerated type.

Any type property Extracts

type The base type of an attribute type.
Example
// name

AttrType at = find(current Module, "Created Thru")
print at.name // prints "Created Thru"
// type

AttrType at = find(current Module, "Integer")
print stringOf at.type

print at.type "\n"

// test for a minimum value

AttrType at = find(current Module, "Type with Min Int value")

DXL Reference Manual

456

if (at.minValue) {
// Enter here if type has a minimum value.
// The following is valid only if base type
// 1is integer.
// The operator is also defined for real and
// date

int i = at.minValue

}

// strings

AttrType t

t=find (current Module, "TableType")
print t.strings[1]

// size

AttrType at = find(current Module, "Boolean")
print at.size // prints "2"
// names

AttrType at = find(current Module, "Boolean")
print at.strings[0]

print at.strings[1]

// values

AttrType at = find(current, "Boolean")
print at.values[0]

print at.values|[1l]

// colors

AttrType at = find(current, "Boolean")
print at.colours[0]

print at.colors[1]

// canWrite and system

AttrType at

Module m = current

for at in m dof{
print at.name "- system: " at.system"; can
write: " at.canWrite "\n"

DXL Reference Manual

457

Concatenation (attribute base type)

The space character is the concatenation operator, which is shown as <space> in the following syntax:
AttrBaseType abt <space> string s

Concatenates the string s onto the attribute base type abt and returns the result as a string.

find(attribute type)

Declaration

AttrType find (Module m,
string typeName)

Operation

Returns an attribute type handle for the attribute type named typeName in the module m, or null if the type does not exist.

Example
AttrType at = find(current Module, "Boolean")

if (null at)
print "Failed\n"

isRanged

Declaration
bool isRanged (AttrType attrType)

Operation

Returns true if attrType is a range (can take minimum and maximum values). Otherwise, returns false.

isUsed

Declaration
bool isUsed (AttrType attrType)

Operation

Returns true if attrType is in use, in which case, its base type cannot be changed. Otherwise, returns false. For
information on changing an attribute type’s base type, see the modify (attribute type) function.

DXL Reference Manual

458 ‘

print(attribute base type)

Declaration
void print (AttrBaseType abt)

Operation

Prints the attribute base type abt in the DXL Interaction window’s output pane.

stringOf(attribute base type)

Declaration
string stringOf (AttrBaseType abt)

Operation

Returns attribute base type abt as a string.

getRealColorOptionForTypes

Declaration
bool getRealColo[u]rOptionForTypes ()

Operation

Returns true if the values contained within the color array of an At trType are real color identifiers. Returns false if
the values are logical color identifiers (the default).

setRealColorOptionForTypes

Declaration
void setRealColo[u]rOptionForTypes (bool
realColors)
Operation
If realColorsis true, sets the values contained within the color array of an At trType to real color identifiers. If

realColorsis false, sets the values to logical color identifiers (the default).

Note: The functions that create and modify an At trType expect arrays of real colors as arguments. Therefore, prior to
any calls being made to either create (attribute type) ormodify (attribute type), this
function must be called setting realColors to true.

DXL Reference Manual

459

setDescription

Declaration

AttrType setDescription(AttrType at, string desc, string &errMess)

Operation

Sets the description for the specified attribute type. Returns null if the description is not successfully updated.

setURI

Declaration
AttrType setURI (AttrType at, string URI, string &errMess)
AttrType setURI (AttrType at, string name, string URI, string &errMess)

AttrType setURI (AttrType at, int index, string URI, string &errMess)

Operation

Sets the URI for the specified attribute type. Returns a modified attribute type. If there is an error, the message is returned
in the final string parameter. The URI can be set for a specified enumeration value or enumeration index.

Example

AttrType at

string errorMsg

string index[] = { "first", "second", "third" }

at = setURI(at, "http://www.webaddress.com", errorMsg)

at = setURI(at, index[0], "http://www.webaddress.com", errorMsqg)
getURI
Declaration

string uri (AttrType at)
string uri (AttrType at, string name)

string uri (AttrType at, int index)

Operation

Gets the URI for the specified attribute type or for a named enumeration value or for a enumeration index.

DXL Reference Manual

460

for attribute type in module

Syntax

for at in Module m do {

where:
at is a vatiable of type AttrType
m is a variable of type Module
Operation

Assigns the variable at to be each successive attribute type definition found in module m.
Example

AttrType at

for at in current Module do {
print at.name "\n"

Attribute type access controls

This section describes functions that report on access rights for an attribute type.

canCreate(attribute type)

Declaration

bool canCreate (AttrType attrType)

Operation

Returns true if the current Rational DOORS user has create access to the attribute type attrType.

canControl(attribute type)

Declaration

bool canControl (AttrType attrType)

DXL Reference Manual

Operation

Returns true if the current Rational DOORS user can change the access controls on the attribute type at trType.

canModify(attribute type)

Declaration
bool canModify (AttrType attrType)

Operation

Returns true if the current Rational DOORS user can modify the attribute type attrType.

canRead(attribute type)

Declaration
bool canRead (AttrType attrType)

Operation

Returns true if the current Rational DOORS user can read the attribute type at trType.

canDelete(attribute type)

Declaration
bool canDelete (AttrType attrType)

Operation

Returns true if the current Rational DOORS user can delete the attribute type at t rType. Otherwise, returns false.

canCreateAttrTypes

Declaration
bool canCreateAttrTypes (Module m)

Operation

Returns true if the current Rational DOORS user has create access for attribute types in Module m..

Attribute type manipulation

This section defines functions for creating new attribute types, modifying, and deleting them.

DXL Reference Manual

461

462

To modify an attribute type, the user must have modify access to it (the canWrite property returns true). No changes
can be made in edit shareable mode or read-only mode. System types cannot be edited (the system property returns
true). For information on properties, see “Attribute type properties,” on page 454.

create(attribute type)

Declaration

AttrType create(string name,
AttrBaseType abt,
string &errmess)

AttrType create(string name,
{int |real|Date} min,
{int|real|Date} max,
string &errmess)

AttrType create(string name,
string codes|[1,
[int values[1,
[int colors[],]
[string descs[1]
[string URI[1,1
string &errmess)

r]

Operation
If the operation fails, all forms of create return an error message in errmess.

The function also throws a run-time DXL error for an invalid input, for example a duplicate type name. These errors can be
trapped using lastError and noError.

The first form creates a new attribute type, of name name and base type abt.
The next form creates a new attribute type named name, of base type int, real or Date, for a range of min to max.

The last form creates enumeration types named name, using enumeration names codes, with optional values values,
colors colors, descriptions descs, and URI URI. The argument URI [] is the URI for each value.

Note: This function expects arrays of real colors as arguments. Therefore, prior to any calls being made to create, the
setRealColorOptionForTypes function must be called setting realColors to true.

Example

// basic create

string errmess = ""

AttrType at = create("Cost", attrInteger, errmess)

if (!'null errmess)
print "Attribute type creation failed\n"

DXL Reference Manual

463

// create enumeration type

string names|[] = {"Tested", "Under Test", "Not Tested"}
int values[] = {1,2,3}
int colors[] = {-1, 20, 14}

string mess = ""
AttrType at = create("Test Status", names, values, colors, mess)

if (!'null mess)
print "Type creation failed\n"

delete(attribute type)

Declaration

bool delete (AttrType at,
string &errmess)

Operation

Deletes the At t rType whose handle is at. If the operation fails, returns an error message in errmess.

modify(attribute type)

Declaration

AttrType modify (AttrType type,
string newName
[, string codes[1,
int values|[1,
int colors[],
string descs|[]
string URI[],
[, int arrMaps|[1,1]
string &errmess)

AttrType modify (AttrType type,
AttrBaseType new,
string &errmess)

Operation

The first form, without any optional parameters, changes the name of the specified attribute type to newName. If supplied,
codes, values, colors, descs, and URI modify those properties of an existing enumerated type. The argument
URI[] is the URI for each enumerated type. In the user interface, the term values maps to codes, and the term related
numbers maps to values. If the type is being used by an attribute, colors cannot be added where they were not
previously assigned, and, arrMaps must be supplied in order to map old values to the new ones.

DXL Reference Manual

464

The second form changes the base type of the specified attribute type. If type is in use the call fails.

Note: Color numbers now refer to real colors rather than logical colors. Enumerated attribute types in Rational DOORS
4 have their colors translated during migration.

For all forms, the errmess argument is currently not used, but is resetved for future enhancements. You can trap errors
using lastError and noError.

Note: This function expects arrays of real colors as arguments. Therefore, prior to any calls being made to modi fy, the
setRealColorOptionForTypes function must be called setting realColors to true.

Example

//This example adds “Invalid Test” to the end of the list of possible
enumeration values, leaving the remaining value intact.

AttrType modifyAndAdd (AttrType atTypeToEdit, string sTypeName, string
arrValues|[], int arrOrdinals[], int arrColours|[], stringé& sErrMsqg)

{
int arrMaps[atTypeToEdit.size + 1]

int i

for (i = 0; 1 < atTypeToEdit.size + 1; i++) {
arrMaps[i] = 1i;
}

return modify(atTypeToEdit, sTypeName, arrValues, arrOrdinals, arrColours,
arrMaps, sErrMsg)

}

setRealColorOptionForTypes (true)

AttrType at = find(current Module, "Test Status")

string new strings[at.size+l]
int new values[at.size+1]

int new colors[at.size+l]

int 1=0
for(i = 0; 1 < at.size; 1i++)
{

new strings[i] = at.strings[i]

DXL Reference Manual

new values[i] = at.values[i]

new colors[i] = at.colors[i]

string errmsg

new strings[at.size] = "highest" // This is name of new value for type
new values[at.size] = at.size

new colors[at.size] = -1

string at name = at.name

AttrType at new = modifyAndAdd(at, at name, new strings, new values, new colors,
errmsqg)

AttrType modifyAndAdd (AttrType atTypeToEdit, string sTypeName, string
arrValues|[], int arrOrdinals[], int arrColours[], stringé& sErrMsqg)

{
int arrMaps[atTypeToEdit.size + 1]

int i

for (i = 0; 1 < atTypeToEdit.size + 1; i++) {
arrMaps[i] = 1i;
}

return modify (atTypeToEdit, sTypeName, arrValues, arrOrdinals, arrColours,
arrMaps, sErrMsg)

}

setRealColorOptionForTypes (true)

AttrType at = find(current Module, "Test Status")

string new strings[at.size+l]
int new values[at.size+1]

int new colors[at.size+l]

int i=0

for(i = 0; 1 < at.size; 1i++)

DXL Reference Manual

465

466

new strings[i] = at.strings[i]
new values[i] = at.values[i]
new colors[i] = at.colors[i]

string errmsg

new strings[at.size] = "Invalid Test" // This is name of new value for type
new values[at.size] = at.size

new colors[at.size] = -1

string at name = at.name

AttrType at new = modifyAndAdd(at, at name, new strings, new values, new colors,
errmsg)

setMaxValue

Declaration

bool setMaxValue (AttrType type,
{int|real|Date} maxValue,
bool maxApplies)

Operation
Specifies a maximum value for the ranged attribute type type, provided maxAppliesis true.

If the call succeeds, returns true; otherwise, returns false. If maxAppliesis false, the maximum value is ignored,
and the function returns true.

If the specified maximum value is less than the minimum value, the call fails.

If the specified type is not a ranged type, or is not of the same type as maxValue, a run-time error occurs, which can be
trapped using lastError and noError.

Example

Module m = current

AttrType atype = find(m, "MyType")
string sBaseType = stringOf (atype.type)

if (sBaseType == "Integer")

{
// set a maximum of 100, and enable the
// maximum

DXL Reference Manual

467

setMaxValue (atype, 100, true)

setMinValue

Declaration

bool setMinValue (AttrType type,
{int|real|Date} minValue,
bool minApplies)

Operation
Specifies a minimum value for the ranged attribute type type, provided minAppliesis true.

If the call succeeds, returns true; otherwise, returns false. If minAppliesis false, the maximum value is ignored,
and the function returns true.

If the specified maximum value is less than the minimum value, the call fails.

If the specified type is not a ranged type, or is not of the same type as minValue, a run-time error occurs, which can be
trapped using lastError and noError.

Example

Module m = current

AttrType atype = find(m, "MyType")
string sBaseType = stringOf (atype.type)

if (sBaseType == "Integer")

{
//set a minimum of 10, and enable the minimum
setMinValue (atype, 10, true)

DXL attribute

DXL attribute is an option on the Define Attribute window, which enables you to write a DXL program that calculates the
value of the attribute being defined. The calculation only takes place the first time the attribute is accessed, or if it is later
cleared to null and is subsequently accessed again. This means the DXL code is not executed when the containing module is
opened, but when some event occurs that causes the attribute to be accessed. For example, the event could be because the
attribute is being displayed in a column, or because the user opens the Formal Object Editor window on an object with a
DXL attribute value.

DXL attribute provides a means of initializing an attribute using DXL, and then caching that value so that subsequent
attribute access does not involve recalculation. If the code resets the attribute to the null string, recalculation occurs on the
next access. Just setting the value to the null string is not sufficient to invoke recalculation. The attribute value must be
accessed after the reset to null, for a recalculation to take place.

DXL Reference Manual

468

For example, if attribute "Outgoing" is displayed in a Rational DOORS column, the initial value is calculated for each
"Outgoing" attribute as the user views it. If mote outgoing links atre created, the attribute values do not change; to do
this, the recalculation must be forced, possibly from another DXL application that contains the following sctipt fragment:

Object o

for o in current Module do
o0."Outgoing" = (string null)

nn

The (string null) ensures a null value, as compared to the integer 0, or the empty string

Note: The perm void refresh (Module m) should not be used in DXL attributes.

attrDXLName

Declaration
Object obj

const string attrDXLName

Operation

DXL attribute programs run in a context where the variable obj is already declared to refer to the object whose attribute
is being calculated.

The constant at t rDXLName can be used instead of a literal attribute name to refer to the attribute value that is being
calculated. This enables one piece of DXL attribute to be used for several attributes without being modified.

Example
obj.attrDXLName = today

DXL attribute example program

This example in SDOORSHOME/1ib/dx1l/attrib/impact.dxl:
// impact.dxl -- example of DXL attribute
/*

DXL attribute provides a means of initializing
an attribute using DXL, so that subsequent
accesses of the attribute do not involve
re-calculation.
This example of DXL attribute requires that an
integer attribute named "Outgoing" exists and
has been defined with the Rational DOORS GUI to use this
file as its DXL value.
"Outgoing" is set to the number of links
leaving its object.

*/

Link 1

DXL Reference Manual

469

int count = 0

// obj is the predeclared object whose attribute
// we are calculating

for 1 in obj->"*" do count++
// count outgoing links
obj."Outgoing" = count

// initialize the cached value
// resetting to (string null)
// in a DXL program

// will force re-calculation
// end of impact.dxl

DXL Reference Manual

470

DXL Reference Manual

Chapter 22

Access controls

This chapter describes access controls:

* Controlling access

* Locking

¢ Example programs

Controlling access

This section defines properties, operators, functions and for loops that work with access controls. Many of these elements
use the data types Permission and AccessRec.

Properties

The following properties of type Permission are used for setting access controls, using the assighment operator.

none

read This is automatically given for modify, create, delete, or control.

create Automatically confers read access. Automatically given for control.

modify Automatically confers read access. Automatically given for control.

delete Automatically confers read and modify access.

control Automatically confers read, modify and create access.

write This is a bitwise OR of modify, create and delete;itis only supported

for compatibility with earlier releases.

change Identical to control, this is only supported for compatibility with eatlier releases.

Operators

As with other data types, the assighment operator = is used to set a permission, as shown in the following syntax:

Permission p = permission

DXL Reference Manual

471

472

where:
P is a variable of type Permission
permission is a variable of type Permission

The | (pipe) operator performs bitwise OR operations on permissions as shown in the following syntax:
Permission x | Permission y

The & operator performs bitwise AND operations on permissions as shown in the following syntax:
Permission x & Permission y

The == relational operator performs comparison on permissions as shown in the following syntax:

Permission x == Permission y
Example
Permission all = read|create|modify|delete|control

Access status

Declaration

bool read (AccessRec ar)
bool create (AccessRec ar)
bool modify (AccessRec ar)
bool delete (AccessRec ar)
bool control (AccessRec ar)
bool write (AccessRec ar)

bool change (AccessRec ar)

Operation

Each of the first five functions returns t rue if the access record confers modify, create, delete, control, or read permission.
Both write and change are supported for compatibility with earlier releases; write returns true if the access record
confers modify permission, and change returns t rue if the access record confers control permission. If the specified
permission is not present, each function returns false.

Note: When using these functions with groups, any information returned for create permission is redundant as there is
no create permission on groups.

partition

Declaration

bool partition (AccessRec ar)

DXL Reference Manual

473

Operation

Returns true if the data that is associated with the access record has been partitioned out.

get, getDef, getVal

Declaration

AccessRec get ({Object o|Module m|Project p|
Folder f|Item i|View v|Group g},
[AttrType at,]
{string user|string group,
string &message)

AccessRec get{Def|Val} (Module m,
AttrDef ad,
{string user|string group},
string &message)

Operation

The first form returns the access record for object o, module m, project p, folder f, item i, view v, or group g for Rational
DOORS user with name user, or group with name group. Optionally, for a module, the access record can be for a
specific attribute type at.

The function getDef returns the access record for the attribute definition ad in module m.
The function getVal returns the access record for the attribute value of the attribute definition ad in module m.

For all these functions, the strings user or group, are the Rational DOORS user or group, to whom the access record
applies. If they are null, the function returns the default access record. If the operation succeeds, returns a null string in
message; otherwise, returns an error message.

If no specific access control setting has been made, these functions return null. However, a parent object or module setting
might be being inherited.

getimplied

Declaration

string getImplied({Object o|Module m|Project p|Folder f|Item i}, Permission &ps)

Operation

Returns the permissions that are inherited by children of the resource when the user has create permission to the resource
(extra access propagated by create).

Returns the permissions inherited by children of object 0, module m, folder £, item 1, or view v. Optionally, when
specifying a module, the permissions can be for a specific attribute type at.

If the operation succeeds, returns a null string; otherwise, returns an error message.

DXL Reference Manual

474

If no specific extra access setting has been made, these functions return null. However, a parent object or module setting

might be being inherited.

inherited, inheritedDef, inheritedVal

Declaration

string inherited({Object o|Module m|Project p|Folder f|Item i|View v}
[,AttrType at])

string inherited{Def|Val} (Module m, AttrDef ad)

Operation
These functions set access control to be inherited rather than specific.

The first form does this for object 0, module m, project p, folder £, item 1, or view v. Optionally, for a module, the access

record can be for a specific attribute type at.

The inheritedDef function does this for the attribute definition ad in module m. The inheritedVval function
does it for the attribute value of the attribute definition ad in module m.

If the operation succeeds, returns null; otherwise, returns an error message.

isAccesslnherited

Declaration

string isAccessInherited({Object o|Project pl|Folder f|Item i|View v},
bool &inherited)

string isAccessInherited (Module m, [AttrType at,]bool &inherited)

string isAccessInherited{Def|Val} (Module m, AttrDef ad, bool &inherited)

Operation

Returns whether the access rights are inherited.

The first form does this for object o, project p, folder £, item 1, or view V.

The second form does this for module m. Optionally, the access record can be for a specific attribute type at.

The isAccessInheritedDef function does this for the attribute definition ad in module m. The
isAccessInheritedVal function does it for the attribute value of the attribute definition ad in module m.

If the operation succeeds, returns null; otherwise, returns an error message.

DXL Reference Manual

475

isDefault

Declaration

bool isDefault (AccessRec ar)

Operation

Returns true if ar is the default access record for a particular item; otherwise, returns false.

Example
AccessRec ar
// process module (exclude inherited rights)

for ar in current Module do
{
// only relevant if default
if (isDefault (ar) == true)
{
// .. do stuff

set, setDef, setVal

Declaration

string set ({Object o|Module m|Project p|Folder f|Item i|View v|Group g},
[AttrType at,]
Permission ps,
{string user|string group)

string set{Def|Val} (Module m,
AttrDef ad,
Permission ps,
{string user|string group)

Operation

The first form sets permission ps on object 0, module m, project p, folder £, item 1, view v or Group g, for Rational
DOORS user with name user, or group with name group. Optionally, for a module, the permission can be for a specific
attribute type at.

The function setDef sets the permissions for the access list of the attribute definition ad in module m.
The function setVal sets the permission of all values of the attribute definition ad in module m.

For all these functions, if user/group is null, the function modifies the default access control. If the operation succeeds,
it returns a null string; otherwise, it returns an error message. When retrieving access for an item and the user/group name
retrieved is being assigned to a string, ensure that an empty string is appended to the end of the assigned string.

DXL Reference Manual

476

In some circumstances it might be possible to add the administrator user to a Rational DOORS access list. This should be
guarded against.

Example

set (current Object, read|modify|delete|control, doorsname)

setimplied

Declaration

string setImplied({Object o|Module m|Project pl|Folder f|Item 1i},
Permission ps)

Operation
Sets the extra access control propagated by create for children of the resource.
Sets permission ps on object 0, module m, project p, folder £, item 1, or view V.

If the operation succeeds, returns a null string; otherwise, returns an error message.

specific, specificDef, specificVal

Declaration

string specific({Object o|Module m|Project pl|Folder f|Item i|View v},
[AttrType at])

string specific{Def|Val} (Module m, AttrDef ad)

Operation

These functions set access control to be specific rather than inherited. The item is left with specific access rights, which are
identical to the inherited rights at the time the function is called. These functions have no effect if the access rights are
already specific.

The first form does this for object 0, module m, project p, folder £, item 1, or view v. Optionally, for a module, the access
rights can be for a specific attribute type at.

The specificDef function does this for the attribute definition ad in module m. The specificVal function does it
for the attribute value of the attribute definition ad in module m.

If the operation succeeds, returns null; otherwise, returns an error message. If the user does not have control access, the
call fails.

DXL Reference Manual

477

unset, unsetDef, unsetVal, unsetAll

Declaration

string unset ({Object o|Project p|Module m| Folder f|Item i|View v|Group g},
[AttrType at,]
{string user|string group})

string unset{Def|Val} (Module m,
AttrDef ad,
{string user|string group})

string unsetAll ({Object o|Project plModule m| Folder f|Item i|View v|Group g},
[AttrType at,])

string unsetAll{Def|Val} (Module m, AttrDef ad)

Operation

The first form clears the permission set on object o, project p, folder £, item 1, View v, or Group g for Rational DOORS
user with name user, or group with name group.

The second form clears the permission set on module m. Optionally, clears the permission for a specific attribute type at.
The function unsetDef clears the permissions set for the access list of the attribute definition ad in module m.

The function unsetVal clears the permissions set for all values of the attribute definition ad in module m.

The function unsetAll clears all user permissions set for the specified argument.

The function unsetAl1Def clears user permissions set for the access list of the attribute definition ad in module m.
The function unsetAl1lVal clears user permissions set for all values of the attribute definition ad.

If user (or group) is null, the call fails. If the operation succeeds, returns the null string; otherwise, returns an error

message.

Note: Care should be taken when using these perms. The unsetting of the access controls is immediate, so if the user is
removing specific access controls for an item, they must ensure that the default user has control access before use.
Furthermore, care should be taken when using these perms in loops.

Example
Module m = current
string err = unset(m, "joe")

if (!'null err){
infoBox (err)

DXL Reference Manual

478

username

Declaration

string username (AccessRec a)

Operation

Returns the user name associated with the access record a. A null result means that access record a is the default record.

Example
string mess
AccessRec a = get(current Object, null, mess)

if (null mess) {
if (null a) {
print "default record"

} else {
print (username a) "\n"
}
} else {
print "error getting access record: " mess

for access record in type

Syntax

for ar in type do {

where:
ar is a vatiable of type AccessRec
type is a variable of type Module, Object, Folder, Item, View, AttrDef,
Group or AttrType
Operation

Assigns the variable ar to be each successive access record in type, excluding inherited access rights.
Example
AccessRec ar

for ar in current Object do {
string user = username ar

DXL Reference Manual

479

if (null user) {
print "default"
} else {
print user

}

print " can read? " (read ar) "\n"

for access record in all type

Syntax
for ar in all type do {

where:
ar is a vatiable of type AccessRec
type is a variable of type Module, Object, Folder, Item, View, AttrDef, or
AttrType
Operation

Assigns the variable ar to be each successive access record in type, including inherited access rights.

for access record in values

Syntax

for ar in values (AttrDef ad) do {

where:
ar is a variable of type AccessRec
ad is a variable of type At trDef
Operation

Assigns the vatiable ar to be each successive record found for the list of attribute values obtained by passing the attribute
definition ad to the function values.

Example
AccessRec ar

AttrDef ad = find(current, "Object Heading")

DXL Reference Manual

480

for ar in values ad do {
print (username ar) " can read " (read ar)
"\nll

Locking

This topic defines functions that are used in conjunction with access controls to implement shared access to modules.

In the context of access control, a section is defined as anything with a specific access control, along with everything that
inherits that access control.

The lock manager functions are described in “Locking,” on page 933.

isLockedByUser

Declaration

bool isLockedByUser (Object o)

Operation
Returns true if the specified object is locked by the current user when in edit shareable mode. Otherwise, returns false.

This function is not equivalent to checking whether the current user can modify the given object.

lock(object)

Declaration

string lock (Object o)

Operation
Locks object o. If the operation succeeds, returns null; otherwise, returns an error message.

This function only makes sense when o is in a module that has been opened shareable.

Example

if (isShare current) {
string mess = lock current Object

if (!'null mess)
print "lock failed: " mess "\n"

DXL Reference Manual

481

Unlock object functions

Declaration
bool unlockDiscard{All|Section} (Object o)

bool unlockSave{All|Section} (Object o)

Operation

These functions unlock sections. The functions unlockDiscardAll and unlockSaveAll unlock all sections in the
module containing o. The functions unlockDiscardSection and unlockSaveSection unlock the section
containing o.

The functions either discard changes or save changes before unlocking according to the function name.

If the operation is successful, returns true; otherwise, returns false.

Example programs

This section contains two example programs.

Setting access control example

This example shows how to set the default specific access rights, assuming the calling user has permission so to do.
// access control setting example

/*
Example Access control setting program.
Sets all objects in the current display set
(i.e. respecting filtering, outlining, level,
etc.) to have a specific access control, thus
enabling them to be locked in shareable mode.
Current module must be editable, and is then
reopened shareable.
*/
if (null current Module) {
ack "Please run this program from a module"

halt
} else if (!isEdit current) {
ack "current module must be editable to set
permissions"
halt
} else if ((level current Module)==0) {

ack "Please set a specific level display\n" //-
"all objects at this level will be made\n"

DXL Reference Manual

482

//=
"lockable by giving them a specific
default\n" //-
"access control"

halt

}

Object o

string modName = (current Module) ."Name" ""

for o in current Module do {
string err

if (level o != level current Module)
// just make selected level lockable
continue

// alter the default ACL record
err = set(o,read|modify|delete|control,null)

if (!'null err) {

ack "problem setting default ACL: " err
halt
}
}
save current // save our work

if (close current)
share modName

// open with new lockable sections

Reporting access control example

The following program illustrates some more access control features:
// access control example
/*
Example Access Control DXL
*/
if (null current Module) {

ack "Please run this program from a module"

halt
}

// function to display an ACL record:
bool showAcl (string user, AccessRec acl, string type)

string thisuser = (username acl)

DXL Reference Manual

if (thisuser != user) return false
print "User: " user " has "
bool something = false

if (read acl) {
something = true
print "read "

}

if (modify acl) {
something = true
print "modify "
}

if (delete acl) {
something = true
print "delete "
}

if (control acl) {
something = true
print "control "

}
if (!something) print "no "
print "powers on " type "\n"
return true
}
string user = doorsname
AccessRec acl
bool found = false

for acl in current Module do {

if (showAcl (user, acl, "current module"))

found = true
break

}
if (!found)

print "default permission in current module\n"

found = false

for acl in current Object do {

if (showAcl (user, acl, "current object"))

found = true
break

DXL Reference Manual

483

484

if (!found)
print "default power on current object\n"

string fail
fail = set (current Module, change, user)

if (!null fail)
print "Setting change failed for current
module: " fail "\n"

DXL Reference Manual

Chapter 23
Dialog boxes

This chapter describes DXL facilities for creating Rational DOORS dialog boxes, which are any windows that are
constructed by DXL. Throughout this manual, the term dialog box is used to mean Rational DOORS dialog box. This

chapter covers the following facilities:

Icons

Message boxes

Dialog box functions

Dialog box elements
Common element operations
Simple elements for dialog boxes
Choice dialog box elements
View elements

Text editor elements

Buttons

Canvases

Complex canvases

Toolbats

Colors

Simple placement
Constrained placement
Progress bar

DBE resizing

HTML Control

HTML Edit Control

An extensive example of all dialog box functions can be found in ddbintro.dx1 in the DXL example directory.

Icons

This section defines constants and functions for using icons within dialog boxes. The functions use the Icon data type.

DXL Reference Manual

485

486

Constants

Declaration

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

iconDatabase
iconProject
iconProjectCut
iconProjectDeleted
iconProjectOpen
iconProjectOpenDeleted
iconFormal
iconFormalCut
iconFormalDeleted
iconLink

iconLinkCut
iconLinkDeleted
iconDescriptive
iconDescriptiveCut
iconDescriptiveDeleted
iconFolder
iconFolderCut
iconFolderDeleted
iconFolderOpen
iconFolderOpenDeleted
iconDatabase
iconGroup
iconGroupDisabled
iconUser
iconUserDisabled
iconReadOnly

iconNone

iconAuthenticatingUser

DXL Reference Manual

487

Operation

These standard icon values can be used in functions where a value of type Icon is required. Icon constants starting
folder ate for tool bars; those starting i con are for list and tree views. Use the set (icon) function to specify an
icon. Use the same function with iconNone to remove an icon. You can also load icons from disk. For further
information, see the 1oad function.

Example

set (theTab, 0, iconDatabase)

load

Declaration

Icon load(string fileName)

Operation
Loads an icon from disk. The £ileName argument must be a full path.

For Windows platforms, if the file has an extension . ico, Rational DOORS assumes it is a Windows icon file; otherwise,
Rational DOORS assumes it is a Windows bitmap.

Masks only work with icon files, not with bitmaps. An icon file should represent an image of either 16x16 or 32x32 pixels.
The file should have no more than 8 bits per pixel (256 colors).

On UNIX platforms, icon files are . xpm (X PixMap) files; icons are Motif Pixmaps. For further information, see the XPM
documentation.

Example

Icon i = load("c:\\test.ico")

set (theTab, 0, 1)

destroy(icon)

Declaration
void destroy(Icon iconName)
Operation

Frees up resources used by iconName. Use this when you destroy a dialog box; for further information, see the
destroy(dialog box) function.

Example

Icon ic = load("c:\\test.ico")
set (theTab, 0, ic)

// .. then on program close

destroy ic

DXL Reference Manual

488 ‘

Message boxes

This section defines functions that create message boxes. Message boxes provide a convenient way of informing users of
events, such as confirmations or errors. The functions use the DB data type.

acknowledge

Declaration

void ack[nowledge] ([DB box,]
string message)

Operation

Pops up a message box containing the message and an Acknowledge or OK button, depending on platform, in a manner
compatible with the rest of Rational DOORS. Execution of the DXL program is suspended until the user clicks
Acknowledge or OK.

The optional DB box argument positions the message box over a specific dialog box.

Example

ack "Invalid weight supplied for grommet"

errorBox

Declaration

void errorBox ([DB box,]
string message)

Operation

Pops up a message box containing the error and an Acknowledge or OK button, depending on platform, in a manner
compatible with the rest of Rational DOORS. Execution of the DXL program is suspended until the user clicks
Acknowledge or OK.

The optional DB box argument positions the message box over a specific dialog box.

Example

errorBox "Path does not exist"

infoBox

Declaration

void infoBox ([DB box,]
string message)

DXL Reference Manual

489

Operation

Pops up a message box containing information and an Acknowledge or OK button, depending on platform, in a manner
compatible with the rest of Rational DOORS. Execution of the DXL program is suspended until the user clicks
Acknowledge or OK.

The optional DB box argument positions the message box over a specific dialog box.

Example

infoBox "Insufficient space on specified drive"

warningBox

Declaration

void warningBox ([DB box,]
string message)

Operation

Pops up a message box containing the warning and an Acknowledge or OK button, depending on platform, in a manner
compatible with the rest of Rational DOORS. Execution of the DXL program is suspended until the user clicks
Acknowledge or OK.

The optional DB box argument positions the message box over a specific dialog box.

Example

warningBox "This deletes all files - continue?"

confirm

Declaration

bool confirm([DB box,]
string message,
int severity)

Operation

Pops up a confirmation box containing the message and buttons labeled Confirm and Cancel. The severity argument
controls the icon displayed in the message box; the value can be one of msgInfo (blue i), nsgWarning (ted X),
msgError (yellow !), or msgQuery (black ?). The DXL program is suspended until the user clicks one of the buttons,
when the function returns true for Confirm and false for Cancel.

Note: The use of ‘\t’ within the message string is not supported.

The optional box argument positions the message box over a specific dialog box.

Example

if (confirm "Delete all records?")
deleteRecords

DXL Reference Manual

490

query

Declaration

int query ([DB box,]
string message,
string[] buttons)

Operation

Displays a message box with the message and buttons with the labels provided in the string array. The DXL program is
halted until the user clicks one of the buttons, when the function returns with the index for that button.

The optional DB box argument positions the message box over a specific dialog box.

Example
string analyopts[] = {"Linear", "Quadratic",
"Spline"}
int mode = query("Select analysis model",
analyopts)
if (mode == 0) {
doLinearAnalysis
} else if (mode == 1) {
doQuadraticAnalysis
} else {
doSplineAnalysis
}
messageBox
Declaration

int messageBox ([DB box,]
string message,
string buttonsl|],
int severity)

Operation

Displays a message box with the message, and buttons with the labels provided in the string array. The severity
argument controls the title of the message box; the value can be one of msgInfo (blue i), nsgWarning (red X),
msgError (yellow!), or msgQuery (black ?). The DXL program is halted until the user clicks one of the buttons, when
the function returns with the index for that button.

The optional DB box argument positions the message box over a specific dialog box.

Example

string buttons[] = {"Yes", "No", "Cancel"}

DXL Reference Manual

491

int answer = messageBox ("Do you want save?",
buttons, msgQuery)

print answer

confirm("Really?", msgWarning)

Dialog box functions

This section defines functions for dialog boxes, which are built around the data type DB. Dialog boxes contain elements,
such as buttons, fields or labels, which are represented by the data type DBE.

addAcceleratorKey

Declaration

void addAcceleratorKey (DB db, void dxlCallback(), char accelerator, int
modifierKeyFlags)

Operation

Adds an accelerator key accelerator to the dialog db with the callback function dx1Callback () and the passed-in
modifierKeyFlags.modifierKeyFlags is used in conjunction with the accelerator parameter to change
which key should be pressed with the accelerator key. Possible values for it are modKeyNone, modKeyCtrl,
modKeyShift and null.

The specified DXL callback fn dx1Callback () executes for the specified keystroke combination being pressed when
the DXL dialog box db is active.

Only call this perm after the dialog box db has been realized, otherwise a DXL run-time error will occur.
Example
void fn ()

{

print "callback fires\n"

}
DB db = create("testDialog", styleStandard)

realize db

// The callback fn() will be executed on pressing Shift+F7 when the dialog db is
active.

addAcceleratorKey (db, fn, keyF7, modKeyShift)

DXL Reference Manual

492

baseWin

Declaration

void baseWin (DB box)

Operation
This function is only for use in batch mode.

Displays the dialog box and suspends execution of the DXL program. Execution continues in callbacks from the buttons
on the dialog box. No code should be placed after a call to baseWin, because it would never be executed.

block

Declaration
void block (DB modalBox)

Operation

Displays a modal dialog box. When a modal dialog box is displayed, the rest of the Rational DOORS interface is insensitive,
leaving only the given dialog box able to receive input. The interface remains in this state until either the dialog box is closed
or the release function is called.

Unlike show, DXL program execution is resumed after the call to block when the modal dialog box is released.

Example
block importantQuesBox

processResult

busy

Declaration
void busy (DB box)

Operation

Sets the window busy, displaying the waiting cursor and making it insensitive to input. Use the ready function to reset the
dialog box to normal.

Example

busy stressResultsBox

DXL Reference Manual

493

centered

Declaration

DB cent[e]lred(string title)

Operation

Creates a dialog box that is centered on the screen. Nothing appears on the screen until it is passed to either the block or
show (dialog box) function, when the dialog box window title bar contains title.

Example

DB splashBox = centered "Welcome to Example"

create(dialog box)

Declaration

DB create([{Module|DB} parent,]
string title
[,int options])

Operation

Creates a new, empty dialog box structure. Nothing appears on the screen until it is passed as an argument to show, when
the dialog box window title bar contains title.

The optional first argument creates a child window of the module or dialog box specified by parent. When a child
window is hidden, its parent is put in front of any other windows. The optional third argument defines the style of the
dialog box; it can have bitwise OR combinations of the following values:

Constant Meaning

styleStandard Appears like other Rational DOORS windows.

styleFixed Has no resizing capability.

styleCentered Appears in the center of the screen.

styleCentred Appears in the center of the screen.

styleFloating Appears above all other Rational DOORS windows.

styleNoBorder Has no title bar or resizing capability.

styleThemed Inherits themed styles into tabs

styleAutoParent Automatically set the parenting of controls based on layout
information

DXL Reference Manual

494

Example

DB parseBox = create("Sim File Parser", styleCentered|styleFixed)
label (parseBox, "Nothing in here yet")

show parseBox

createButtonBar

See “createButtonBar,” on page 639.

createltem

See “createltem,” on page 639.

createCombo

See “createCombo,” on page 644.

destroy(dialog box)

Declaration
void destroy (DB box)

Operation

Frees up resources used by box. The specified box should not be used after it has been destroyed without being
re-initialized. After using destroy, you should set box to null.

If the dialog box used icons, you should also destroy them using the load function.

Note: Destroy should not be used within a callback function for a DBE.

getPos
Declaration
void getPos (DB myWindow,
ints x,
int& y)

Operation

Returns in x and y the screen co-ordinates of the origin of the specified window.

DXL Reference Manual

495

getSize
Declaration
void getSize (DB myWindow,
int& w,
int& h)

Operation

Returns in h and w the height and width of the specified window. Dimensions are returned in pixels.

getTitle

Declaration
string getTitle (DB myWindow)

Operation

Returns the title of the specified window.

getBorderSize

Declaration

int getBorderSize (DB myWindow)

Operation

Returns the width in pixels of the border for the specified dialog box.

Example

DB DBox = create("Dialog Box", styleCentered|styleFixed)
int i = getBorderSize (DBox)

label (DBox, "Border size is " 1 "")

show DBox

getCaptionHeight

Declaration
int getCaptionHeight (DB myWindow)

DXL Reference Manual

496

Operation

Returns the height in pixels of the caption area for the specified dialog box.

Example
DB DBox = create("Dialog Box", styleCentered|styleFixed)
int 1 = getCaptionHeight (DBox)

label (DBox, "Caption height is "™ 1 "")

show DBox

help, gluedHelp

Declaration

void {gluedH|h}elp (DB box,
int index)

Operation

Adds a Help button to a dialog box box. When the user clicks the button, help is activated displaying the entry identified

by the index number.

The optional second argument associates the Help button with the named helpFile and an entry index in it. The help
file must be in the appropriate format for the platform and must be referenced by a full path name; a relative path does not
work in this case. This can be used to add user-defined help information to Rational DOORS.

When a dialog box has a large number of buttons, the gluedHe 1p function is used to link the help button to the last

button, to prevent them from overlapping.

These functions can only refer to help entries in the standard Rational DOORS help file, DOORS . HLP. In addition the

following standard values can be used to obtain help system functions:

1 Contents page

2 Help on help

3 Search help
Example

help (simParse, 301)

help (simParse, "SIMPARSE.HLP", 1)

hide(dialog box)

Declaration
void hide (DB box)

DXL Reference Manual

497

Operation

Removes dialog box box from the screen.

Example
hide thisBox

raise

Declaration

void raise (DB box)

Operation

Brings dialog box box to the top, over all other windows.

Example

raise tempBox

setFocus

Declaration

void setFocus (Module m)

Operation

Sets the windows focus on the module m.

ready

Declaration

void ready (DB box)
Operation

Used after a call to busy, this function makes dialog box box sensitive to input again, and removes the waiting cursor.

Example
ready graphBox

realize(pending)

Declaration

vold realize (DB box)

DXL Reference Manual

498

Operation

Creates and displays the dialog box without suspending execution of the DXL program. The dialog box only becomes
active when a show function is called, either for this dialog box or another.

This function is used where you wish to do something that can only be done once the dialog box internal structure has been
created, for example, add columns to a list view. Creating the internal structure is called realization.

Example

realize infoBox

realize(show)

Declaration

void realize (DB myWindow,
int x,
int y)

Operation

Creates the specified window and initializes its origin to the co-ordinates (x, y).

release

Declaration
void release (DB modalBox)
Operation

Hides the modal dialog box moda 1Box, and resumes execution of the DXL program after the call to block. The
Rational DOORS interface then becomes operative.

Example

release importantQuesBox

show(dialog box)

Declaration
void show (DB box)
Operation

Displays the dialog box and suspends execution of the DXL program. Execution only continues in callbacks from the
buttons on the dialog box. No code should appear after a show as it would never be executed.

Example

show splashBox

DXL Reference Manual

499

showing

Declaration

bool showing (DB box)

Operation

Returns true if box is displayed as a result of a call to show or realize.

Example

if (showing infoBox) { ... }

getParent

Declaration

{DB|DBE} getParent (DBE element)

Operation

Returns the parent dialog box or dialog box element of the specified dialog box element. This is useful in callback functions.
If the function that returns an object of type DBE is called, and the patent is not an object of type DBE, the function returns
null.

Example

void takeAction (DBE button) {
DB enclosedby = getParent button

// user code here
} // takeAction

setParent

Declaration

void setParent (DB box|DBE child,
{DB|DBE |[Module} parent)

Operation
Sets the parent of childto be parent.

The only type of DBE which can be the parent of another DBE, is a frame.

DXL Reference Manual

500

setPos
Declaration
void setPos (DB myWindow,
int x,
int y)

Operation

Sets the screen co-ordinates of the origin of the specified window to the co-ordinates (x, y).

setCenteredSize

Declaration

void setCenteredSize (DB box,
int width,
int height)

Operation

Sets the width and height of box to width and height pixels, independently of any styles used, such as
styleCenteredor styleFixed.

This function must be placed after a call to the realize (pending) function, and before any further call to either the
show (dialog box) or block functions.

Example

DB dlg = create("Test Window", styleCentered |
styleFixed)

realize dlg
// both width and height are specified in pixels
setCenteredSize (dlg, 300, 100)

show dlg
setSize
Declaration
void setSize (DB myWindow,
int w,
int h)

Operation

Sets the width and height of the specified window to the values in w and h. Dimensions are specified in pixels.

DXL Reference Manual

501

setTitle

Declaration

void setTitle (DB myWindow,
string newTitle)

Operation

Sets the title of the specified window to newT3i t 1e. This function is used after the window is created.

setBaseWindowContext

Declaration

voild setBaseWindowContext ()

Operation
Used when displaying dialog boxes in batch mode. This enables the use of realize () for populating DBEs.

startConfiguringMenus

Declaration

void startConfiguringMenus ({DB box|DBE element})

Operation

Starts menu creation and configuration in box or element. To stop menu creation and configuration for a dialog box
element, use the stopConfiguringMenus function. For a dialog box, the menu configuration stops when the dialog

box is shown.

stopConfiguringMenus

Declaration

string stopConfiguringMenus (DBE element)

Operation

Disables menu creation and configuration functions for the specified dialog box element. To start menu creation and
configuration, use the startConfiguringMenus function.

DXL Reference Manual

502

topMost

Declaration
DB topMost (string title)

Operation

Creates a dialog box that always stays on top of all other windows. This can be used instead of the create (dialog
box) function.

Example
DB top = topMost "TOPMOST"

label (top, "I am on top!")

show top
hasFocus
Declaration

bool hasFocus (DBE toolbar)

Operation

Returns true if the supplied toolbar DBE contains an element that currently has the keyboard focus. Otherwise,
returns false.

setDXLWindowAsParent

Declaration

void setDXLWindowAsParent (DB dialogq)

Operation

Sets the DXL interaction window to be the parent of dialog. If there is no DXL interaction window, the parent is set to
null.

minimumSize

Declaration

void minimumSize (DB box, int width, int height)

Operation

Sets the minimum size of the dialog box to be width and height.

DXL Reference Manual

503

Negative values are ignored. A width value of 200 and a height value of -1 only sets the minimum width for the dialog box.

Note the dialog box does not need to be realized to set the minimum size.
Example

DB db = create "hello"
realize db
minimumSize (db, 400, 100)
show db

Dialog box elements

Dialog box elements define the components of a dialog box. These are called controls on Windows, and Widgets on
Motif, the most common user interface tool kit on UNIX.

Dialog box elements provide a wide range of capability, although all have the DBE data type. This manual groups the
functions for DXL dialog box elements into the following categories:

¢ Common element operations

* Simple elements for dialog boxes
* Choice dialog box elements

* View elements

¢ Text editor elements

* Buttons

e Canvases

* Complex canvases

Common element operations

This section defines element operations. Unless otherwise specified, these functions can be used with a1l dialog box
elements.

For dialog box elements, the set function has many different variants, all of which are defined in this section. There are
pointers to the appropriate set function from other sections within this chapter.

DXL Reference Manual

504

addMenu

Declaration

void addMenu (DBE element,
string title,
char mnemonic,
string entries| 1,
char mnemonics[],
char hots[1,
string helpl[1,
string inactiveHelp[|
[, int noOfEntries,]
Sensitivity sensitive (int entryIndex),
void callback (int entryIndex))

Operation

Adds a menu to a menu bar, canvas, list view, or tree view. If element is a menu bar, the new menu appears after any
other menus. If element is a canvas, list view, or tree view, the new menu is activated by a right click. For further
information on creating the dialog box elements that can take menus, see the menuBar, canvas, listView, and
treeView functions.

The arguments passed are divided into two sets: those that define the menu, and those that define the menu entries, which
are specified as arrays. To use fixed-size arrays all containing the same number of elements, omit noOfEntries. To use
freely-defined arrays, specify the minimum number of elements in noOfEntries.

The arguments passed to the function are defined as follows:

element The menu bar or canvas in which the menu is to appear; this is returned
by a call to the menuBar or canvas function.

title The title of the menu, as it appears in the menu bar.

mnemonic The keyboard access character, normally shown underlined, which
activates the menu when pressed with ALT; the value ddbNone means
that there is no mnemonic.

entries The strings that appear in the menu.

mnemonics The keyboard access character for this option, normally shown
underlined, which activates the option when pressed with ALT; the
value ddbNone indicates that there is no mnemonic.

hots A hot key that directly activates the option when pressed with CTRL;
for example, if the value of hot s [3] is S, CTRL#S activates the third
option of the menu; the value ddbNone indicates that there is no hot
key.

DXL Reference Manual

505

help String that is displayed in the status bar of the window, if one exists,
when the user passes the mouse over an active menu item.

inactiveHelp String that is displayed in the status bar of the dialog box, if one exists,
when the user passes the mouse over an inactive menu item.

You can construct one level of cascading menus by placing a right angle bracket (>) character at the start of an option name,
indicating that it is a member of a sub-menu:

const string formatMenul[] = {"Size",
">Small",
">Normal",
">Large",
"Style",
">Bold",
">Ttalic"}

This constructs a cascading menu. The first cascading menu, Size, opens out, followed by the second cascading menu,
Style.

Finally, two callback functions are required: one to determine whether menu items ate sensitive, and one that is called when
a menu option is activated.

The function sensitive (int entryIndex) is called for each option, each time the menu is displayed. The
function must return one of the following values:

Availability Meaning

ddbUnavailable The menu option is grayed out.
ddbAvailable The menu option is active.

ddbChecked The menu entry is active and has a check beside it.

When the user selects an option, callback (int entryIndex) is called with the index of the option, and your
program must perform the appropriate operation. For both sensitive and callback functions, entryIndex
starts at 0, and counts up, including cascading menu entries, so there is a direct correspondence between the array elements
and the index returned by the menu.

active

Declaration

void active (DBE element)

Operation

Sets an item active, restoring it from being grayed out and enabling users to interact with it. This is the opposite of the
inactive function. The active function can be used with any kind of dialog box element.

DXL Reference Manual

506

Example

if (gotFileName) active startLoader

inactive

Declaration

void inactive (DBE)

Operation

Sets an item inactive, displaying it in gray and preventing users from interacting with it. This is the opposite of the active
function. The inactive function can be used with any kind of dialog box element.

Example

if (dataNotComplete) inactive verify

hide

Declaration

void hide (DBE element)
Operation

Hides a single dialog box element.

Example

hide showAdminButtons

setGotFocus

Declaration

void setGotFocus (DBE element, void callback (DBE element))

Operation

Sets the callback function to call when element gets input focus. Currently, element must be a list view or tree view on
a Windows platform.

setLostFocus

Declaration

void setLostFocus (DBE element, void callback (DBE element))

DXL Reference Manual

507

Operation

Sets the callback function to call when element loses input focus. Currently, element must be a list view or tree view
on a Windows platform.

show(element)

Declaration

void show (DBE element)

Operation

Makes a single dialog box element visible again.

Example

show showAdminButtons

delete(option or item)

Declaration

void delete (DBE element, int index)

Operation

Deletes the option in element at the given index. The argument element can be a choice, tab strip, list, multi-list,
combo box, or list view. Positions start at zero; when an element is deleted, all the others are moved down. The last
element cannot be deleted in a tab strip. To delete all items in a list or list view, use the empty function.

Example

delete (components, obsoleteEntry)

delete(item in tree view)

Declaration
void delete (DBE treeView, string path)

Operation

Deletes the item pointed to by pa th, which must be an absolute path.

Example

delete (treeView, "Project/Modulel")

DXL Reference Manual

508

empty

Declaration

void empty (DBE element)
Operation
Deletes all items in a list, multi-list, choice, combo box, list view or tree view.

Example
empty listViewl

insert(option or item)

Declaration
void insert (DBE element, int index, string value)

Operation

Inserts a new valueinto element at position 1ndex. The argument element can be a choice, tab strip, list, multi-list,
combo box, or list view. Positions start at zero; when a new element is inserted all the other values are moved up. This
function inserts duplicate values if they are specified.

Example

insert (months, 4, "May")

insert(item in list view)

Declaration

void insert (DBE listView, int row, string value, Icon icon)

Operation

Inserts a new item with the specified string value into the list view, at the zero based row number. The icon is the icon
that appears to the left of the string value on the specified row.

insert(item in tree view)

Declaration

void insert (DBE treeView, string path, Icon normal, Icon selected)

DXL Reference Manual

509

Operation

Inserts the item pointed to by path into t reeView. The third and fourth arguments define icons for the item when it is
not selected and selected, respectively. To make the selected icon the same as the normal icon, use 1conNone as the value
for selected. For valid icon values, see “Icons,” on page 485.

Note that the slash character has a special meaning when included in a string to be inserted: it represents a parent-child
relationship. So adding “Heading1” then “Heading1/sub1” will add “Heading1” as a top-level entty, and “sub1” as a child
entry under it.

Example

insert (treeView, newFolder, iconFolder, iconFolderOpen)

noElems

Declaration

int noElems (DBE element)

Operation

Returns the number of options or items in element. The argument element can be a choice, tab strip, list, multi-list,
combo box, or list view.

Example

int noOfResources = noElems resourcelist

string listContents[noOfResources]

int 1

for (i = 0; 1 < noOfResources; 1i++)
listContents = get (resourcelist, 1)

select(element)

Declaration

void select (DBE textElement, int start, int end)

Operation

Selects text only in a rich text or rich field dialog box element.

selected(element)

Declaration

bool selected(DBE element, int index)

DXL Reference Manual

510

Operation

Returns true if the option or item identified by index is selected; otherwise returns false. The argument element
can be a list, multi-list, or list view.

Example

if (selected(products, ownBrand))
print "Using own brand\n"

selected(item)

Declaration

bool selected(DBE treeView, string path)

Operation

Returns true if the item pointed to by path is selected; otherwise returns false. The argument path must be an
absolute path.

get(element or option)

Declaration

{string|int|bool} get (DBE element [,int index])

Operation

For a multi-list element, returns a value for the most recently selected/de-selected item. For all other elements, with one
argument, returns a value for the first or only selected element of the appropriate type. The optional second argument is
available only for a string return type and list views or choice dialog box elements. Use it to specify a given item in a list view
or a given position in a choice element. The return types and values for all dialog box elements are as follows:

Element Return Contents of most recently Return value
type selected/deselected option if no selection
canvas not
supported
check box int integer defining which element or elements are 0

checked; when converted to binary, the value is a
bitmap for the selection of check boxes, for
example, 5 (101) means first and third boxes
checked

choice string contents of selection (chosen ot typed) or null string
contents of specified choice

DXL Reference Manual

511

Element Return Contents of most recently Return value
type selected/deselected option if no selection
int index (position) of selected option except for -1

typed entries, which return —1 even if the typed
entry matches a selection. This is the preferred
method when the value being retrieved is to be
used elsewhere. The number should be used as
the index to retrieve the value from the original
string array.

field string contents of field null string

bool if the DBE is read only, returns true;
otherwise, returns false

file name string path in file selector null string
frame not
supported
list string contents of selected option or specified option null string
int index (position) of selected option -1
list view string value of selected item or specified item null string
int index of selected item
multi-list string contents of first selected option or specified null string
option
int index (position) of first selected option
radio box int index of the selected option in the array not applicable
rich field string contents of rich field null string
bool if the DBE is read only, returns true;
otherwise, returns
false
rich text string contents of rich text box null string
bool if the DBE is read only, returns true;
otherwise, returns
false
slider int integer in range specified -1
tab strip string name not applicable
int index (position) of currently selected tab not applicable

DXL Reference Manual

512

Element Return Contents of most recently Return value
type selected/deselected option if no selection
text string contents of text box null string
bool if the DBE is read only, returns true;
otherwise, returns
false
toggle bool true false
tree view string full path of selected item null string

You can find out the read-only status of a text or string DBE using get in a boolean expression.

Example
DB exBox = create "Use of Get"
DBE intIn = slider (exBox, "Integer:", 50, 0, 100)

DBE stringIn = field(exBox, "String:", "Example",
20)

void doGet (DB exBox) {

int i = get intIn
string s = get stringln
print 1 ", " s "\n"

} // doGet

apply (exBox, "Get", doGet)

show exBox

setTextChangeCB

Declaration

void setTextChangeCB (DBE,void callbackFn (DBE))

Sets the text change callback for field, richField, text, richText DBEs where the callback is of the form void
callbackFn (DBE).

When the callback function is invoked on a text change, DBE will be the handle of the edit control DBE, which can be
field, richField, text or richText.

Calling this perm using any type of DBE other than these four, leads to a run-time DXL error.

Example

DB db

DXL Reference Manual

513

db = create("hello world", styleCentered | styleStandard)
DBE dbe = field(db, "label", "", 34, false)
int count = 0
void cb (DBE dbe)
{
count++
string str = plainText (get (dbe))

print count "). The edit text now is \"" str "\".

}
setTextChangeCB (dbe, cb)
void checkText (DB db)
{
hide db
}
ok (db, "Cancel", checkText)
close (db, false, checkText)

show db

toolBarEditGetString

Declaration
string toolBarEditGetString (DBE tb, int index)

Gets the contents of the edit control hosted on the toolbar with DBE handle tb, where i ndex identifies the edit control
on this toolbar by the index of the edit control.

Example
#include "utils/icons.inc"
DB db = create("hello", styleStandard)

ToolType types[] = {toolEditField, toolToggle, toolToggle, toolToggle,
toolToggle, toolToggle}

Sensitivity mappingCallback()
{
return ddbAvailable

DXL Reference Manual

514

bool toggleStates[6] = {false, true, true, true, true, true}

int param[] = {100, ICD SAVE, ICD PRINT, ICD TEXTBOLD, ICD TEXTBULLET,
ICD TEXTITALIC}

string toolTip[] = {"first", "second", "third", "fourth", "fifth", "six"}

string help[] = {"firsthelp", "secondhelp", "thirdhelp", "comboonehelp",
"fourthhelp", "combotwohelp"}

string inactiveHelp[] = {"firstinchelp", "secondinchelp", "thirdinchelp",
"combooneinchelp", "fourthinchelp", "combotwoinchelp"}

DBE tb = null
Sensitivity sensitive (int entryIndex)
{
if (types[entryIndex] == toolEditField)
{
return ddbAvailable
}
if (null toolBarEditGetString(tb, 0))
{
return ddbUnavailable
}
if (toggleStates|[entryIndex])
{
return ddbChecked
}
return ddbAvailable
}
int iCount = 0
void callback (int entryIndex)
{
if (types[entryIndex] == toolEditField)
{

iCount++

print iCount "). String in edit box with index " entryIndex " is \""

toolBarEditGetString (tb, entryIndex) "\".

if (null toolBarEditGetString(tb, 0))

DXL Reference Manual

515

toggleStates[1l] = true
toggleStates[2] = true
toggleStates[3] = true
toggleStates[4] = true
toggleStates[5] = true
}
updateToolBars (db)
}
else if (types[entryIndex] == toolToggle)
{
toggleStates[entryIndex] = (!toggleStates[entryIndex])

}

tb = toolBar (db,
"tbname",
mappingCallback,
types,

param,

toolTip,

help,
inactiveHelp,

6,

sensitive,
callback,

true,

true)

realize db
setSize (db, 500, 500)
updateToolBars (db)
show db

DXL Reference Manual

516‘

get(selected text)

Declaration

bool get (DBE textElement, int &first, int &last)

Applies only to text dialog box elements. It returns true if there is a selected area of text; otherwise, returns false. If it

returns true, the integers return the start and finish indices of the selected text, starting from 0. For example, if the first
ten characters are selected, first and 1ast contain 0 and 9.

set(value or selection)

Declaration

void set (DBE element, {stringl|int|bool} value)

void set (DBE currDBE, Buffer b)

Operation

The first form sets either the value of an element or the status of the selected element as follows

The second form sets the content of the specified DBE to be the content of the Buffer.:

Element Type Action
canvas not supported
choice int Sets the selected option.
check box int Sets the selected option.
field string Sets the contents.
bool When true, sets field read only; otherwise, sets field read/write.
file name string Sets the contents.
frame string Sets the contents.
label string Sets the contents.
list int Sets the selected option.
list view int Sets the selected item.
multi-list int Sets the selected option.
text string Sets the contents.
bool When true, sets text read only; otherwise, sets text read/write.
radio box int Sets the selected item.

DXL Reference Manual

517

Element Type Action
rich field string Sets the contents.
bool When true, sets field read only; otherwise, sets field read/write.
rich text string Sets the contents.
bool When true, sets text read only; otherwise, sets text read/write.
slider int Sets the selected item.
status bar string Sets the contents.
tab strip string Sets the selected tab
int Sets the selected tab.
toggle bool When true, sets toggle on; otherwise, sets toggle off.
tree view string Sets the selected item.

Using set with -1 deselects any selection in a list, choice or radio button dialog box element.

If these functions are used with an incorrect type DBE, a DXL run-time error occurs.

Example
DB exBox = create "Use of Put"

DBE intOut = slider (exBox, "Integer:", 50, 0,
100)

DBE stringOut = field(exBox, "String:",
"Example", 20)

void doHigh (DB exBox) {

set (intOut, 100)

set (stringOut, "Max out")
} // doHigh
void doLow (DB exBox) {

set (intOut, 0)

set (stringOut, "")
} // doLow
apply (exBox, "Low", doLow)
apply (exBox, "High", doHigh)

show exBox

DXL Reference Manual

518‘

set(selected status)

Declaration
void set (DBE 1list, int index, bool selected)

Operation

Sets the status of a selected item within a list or list view. identified by index in a list or list view. Valid items are ranged
between position 0 and a number that can be obtained from:

nokElems (DBE) -1

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

set(choice element values)

Declaration

void set (DBE choice, string choices|[] [,int noOfChoices])

Operation

Sets a new range of values into a choice element. You can supply a complete array of strings or a partially filled array with
the number of items supplied in the noOfchoices argument.

This works only with choice dialog box elements created with the choice function. If this function is used with an
incorrect type DBE, a DXL run-time error occurs.

Example

string attrNames[100]
int noOfAttrs = 0
string an

for an in current Module do
attrNames [noOfAttrs++] = an

set (attrChoice, attrNames, noOfAttrs)

set(item value)

Declaration

void set (DBE listView, int item, int column, string value)

Operation
Sets the value of a specific column item within a list view.

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

DXL Reference Manual

519

set(status bar message)

Declaration

void set (DBE statusBar, int section, string message)

Operation
Sets the value of a particular section within a status bar.

If you use ddbFullStatus as section, the string is displayed in the full width of the status bar, as with menu help.
To return to normal display, specify ddbFullStatus with a null string for message.

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

set(file selector)

Declaration

void set (DBE fileSelector, string descs, string exts)

Operation
Sets the file selector description(s) and extension(s) for a dialog box file selector.

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

Example

DB b = create "File Selector DB"

DBE fs = fileName b

set (fs, "Comma separated files", "*.CSV")

show b

set(icon)

Declaration
void set (DBE element, int index, [int column,] Icon icon)
Operation

Sets the displayed icon for either a tab in a tab strip or item in a list view that is identified by index to have the specified
icon. The column atgument must be passed for list views, but not for tab strips. For possible values of icon, see
“Icons,” on page 485. Use this function with 1 conNone as the value for i con to remove an icon.

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

Example

set (linkList, 2, iconLink)

DXL Reference Manual

520 ‘

set(select)

Declaration

void set (DBE element, void select(DBE))

Operation
Attaches a callback to any dialog box element other than a list view. The callback must be of the form:

void select (DBE option) {
}

which fires when option changes.

The exact semantics vary depending on the type of element, but in principle it means a single click. For field elements, the
callback only fires when the user clicks Return or Enter with the cursor in the field.

If this function is used with a list view, a DXL run-time error occuts.

Example
This example adds a callback to a radio box.
DB boatBox = create "Craft"

string boats[] = {"Dinghy", "Destroyer",
"Carrier", "Mine sweeper"}

DBE boatCheck = radioBox (boatBox, "Select
class:", boats, 3)

void toBuild(DBE option) {
int favorite = get option

ack (boatBox, "You are planning a new "
boats[favorite] "?2")
} // toBuild

set (boatCheck, toBuild)

show boatBox

set(key or mouse callback)

Declaration

void set (DBE canvas, void callback (DBE canv,
{char key|int button}
bool controlDown,
int x,
int y))

DXL Reference Manual

521

Operation

Attaches a callback to the specified canvas. The callback can be fired from character input or a mouse click, depending on
the second argument passed to the callback function.

For a character input callback you must supply the code for the key, whether the control key was down, and the mouse
position when the key was pressed. The key code is normally the ASCII character value, but might be one of a set of
predefined constants (see “Keyboard event constants,” on page 562).

For a mouse click callback you must supply the canvas identifier, the mouse button number, starting from 1 for the left
button, whether the control key was down, and the co-ordinates of the mouse at the time.

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

Example

This example adds a callback to a canvas.

// character input callback

DB typeBox = create "Type Something"
int col =0

void redraw (DBE x) {
draw(x, 20, 20, "Type something!")
} // redraw

DBE can = canvas (typeBox, 300, 300, redraw)

void key (DBE can, char k, bool ctrl, int x,
int y) |
color (can, col)

if (k == keyF2) {
col++
} else if (k == keyF3) {
background (can, col++)
} else {
draw (can, x, y, k "")

}

if (col > 29) col =0
} // key
set (can, key)
show typeBox
// mouse button callback
DB drawBox = create "Test"

void redraw (DBE x) {
draw (x, 20, 20, "Hello!"™)

} // redraw
DBE can = canvas (drawBox, 300, 300, redraw)
int lastX = -1

DXL Reference Manual

522

int lastY = -1
int firstX
int firsty
int col =0

void btn (DBE can, int bt, bool ctrl, int x,
int y) |
if (bt == 1) {
if (lastxX > 0) {
line(can, lastX, lastY, x, V)

} else {
rectangle(can, x, vy, 1, 1)
firstX = x
firstY =y
}
lastX = x
lastY =y
} else if (bt == 2) {
lastX = -1
} else if (bt == 3) {
col++

if (col > 29) col =0
color (can, col)

}
} // btn
set (can, btn)

show drawBox

set(select and activate)

Declaration

voild set (DBE element, void select(DBE), void activate (DBE))

Operation

Attaches two callback functions to a list or tree view.

The first callback fires when an item is selected (a single click); the second fires when an item is activated (a double click).
Both callbacks must be of the form:

void callback (DBE item) {
}

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

DXL Reference Manual

523

Example
DB listBox = create "The Good Numbers"
string states[]={"New Jersey", "Virginia", "Texas", "California", "Europe"}

string phones[]={"201 442-4600", "703 904-4360", "817 588-3008", "408 879-2344",
"+44 1865 784285"}

DBE abcList = list(listBox, "ABC Offices:", 200, 4, states)
full listBox
DBE telNo = field(listBox, "Telephone:", "", 30, true)

void onSelection (DBE 1) {
int sel = get abclist

if (sel >= 0) {

set (telNo, phones[sel])
} else {

set (telNo, "")
}

} // onSelection

void onActivate (DBE 1) {
int sel = get abclist

if (sel >= 0) {
ack (listBox,

"Calling ABC in " states[sel] " on "
phones|[sel])
}

} // onActivate
set (abcList, onSelection, onActivate)

show listBox

set(list view callback)

Declaration
void set (DBE listView, void callback (DBE, int))

Operation

Attaches a callback to a check box within a list view, provided the list view was created with check boxes (using the
listViewOptionCheckboxes style). The callback must be of the form:

vold select(DBE listView, int selected) {

}

which fires when the state of any check box changes. The selected argument identifies the item that changed.

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

DXL Reference Manual

524 ‘

set(select, deselect, and activate)

Declaration

vold set (DBE listView,
void select(DBE, int),
void deselect (DBE, int),
void activate(DBE, int))

Operation
Attaches three callback functions to a list view.

The first callback fires when an option is selected (a single click); the second fires when an option is deselected (a side effect
of a single click on another item); the thitd fires when an item is activated (a double click).

All callbacks must be of the form:

vold select(DBE listView, int selected) {

}

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

set(sort function)

Declaration

void set (DBE listView,
int columnIndex,
int dxlSortFn(string, string))

Operation
Attaches a sort function to a specific column within a list view. The callback must be of the form:

void dxlSortFn(string sl1, string s2) {
}

The sort function must return the following values:

Expression Returns
sl==s2 0
sl>s2 1
sl<s2 -1

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

DXL Reference Manual

525

set(tree view expand)

Declaration

void set (DBE treeView, bool expand(DBE, string))

Operation

Attaches a callback to a tree view. The callback fires when an attempt is made to expand a specific branch. The callback
must be of the form:

void expand(DBE treeView, string branch) {

}

The callback function must return the following values:

Meaning Returns
Allow expansion true
Refuse expansion false

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

setFocus

Declaration

vold setFocus (DBE element)

Operation

Sets keyboard focus to the specified element.

getBuffer(DBE)

Declaration
Buffer getBuffer (DBE element)

Operation

Creates a new buffer object and returns it. The returned buffer contains the value of the specified DBE element.
Example

DB exBox = create "DBE example"

DBE stringIn = field(exBox, "String:", "Example", 20)

void doGet (DB exBox) {

Buffer b = create

DXL Reference Manual

526

b = getBuffer (stringln)
print b "\n"

} // doGet

apply (exBox, "Get", doGet)

show exBox

setFromBuffer(DBE, Buffer)

Declaration

void setFromBuffer (DBE element, Buffer b)

Operation

Sets the contents of the specified DBE element from the contents of the specified buffer b.

Example

DB exBox = create "DBE example"

DBE stringIn = field(exBox, "String:", "Example", 20)
Buffer b = create

b = "test setting DBE from buffer"

setFromBuffer (stringIn, b)

show exBox

useRTFColour

Declaration

void useRTFColour (DBE dbe, bool useRTF)

Operation
If dbe dbe is a rich text box or a rich text field, then:

* If useRTFis true, the underlying editbox will use the rtf color markup instead of the default color for text in dialog
boxes

e If useRTFis false, the underlying editbox will use the default system color for text in dialog boxes
* If the dbe dbe is not rich text or a rich text field, nothing happens

* If the dbe dbe has not been realized, nothing happens

Example
DB test = create("Test text db")

DBE textdbe = richText (test, "test", "initial", 200, 200, false)

DXL Reference Manual

string colourstring =

"{\\rtfl\\ansi\\ansicpgl252\\deff0\\deflangl033{\\fonttbl {\\f0\\fswiss\\fcharse

t0 Arial;}}

{\\colortbl

;\\red255\\green0\\blue0; \\red255\\green0\\blue255; \\red0\\green0\\bluel28; }

\\viewkind4\\ucl\\pard\\f0\\fs20 Some\\cfl text \\cf0 with \\cf2 different\\cf0

\\cf3 colors\\cf0 in it.\\par
\\par
}ll

realize test
useRTFColour (textdbe, true)
set (textdbe, colourstring)

show test

Simple elements for dialog boxes

This section defines functions for simple elements such as two-state options, with the exception of buttons, which are
defined in “Buttons,” on page 558. More complex elements that allow the user to choose from various options are defined

in “Choice dialog box elements,” on page 542.

label

Declaration

DBE label (DB box,
string label)

Operation

Creates a label element in dialog box box.

Example

DB infoBox = create "About SimParse"
label (infoBox, "SimParse V2.1")

show infoBox

DXL Reference Manual

527

528 ‘

separator(dialog box)

Declaration

DBE separator (DB box)

Operation

Places a full width separating line across dialog box box.

Example

This example creates a separator between the input slider and the output field. Dialog boxes normally include a separator,
which is automatically created, between the user-defined elements and the standard buttons.

DB exBox = create "Use of Separator"

DBE input = slider (exBox, "Input:", 50, 0, 100)
separator exBox

DBE output = field(exBox, "Output:", "", 30)

void calc (DB exBox) {

int i = get input

set (output, "Input was " i "")
} // calc
apply (exBox, calc)

show exBox

splitter
Declaration
DBE splitter (DB box,
DBE left,
DBE right,
int width)

Operation

Places a movable vertical separating line across dialog box box. The arguments define the left part of the dialog box, the
right part of the dialog box, and the width of the splitter in pixels. This is only supported for DBEs of type 1istView or
treeView.

Example

// constants

const string SARR DUMMY[] = {}
// constants

const int TREE WIDTH = 150

DXL Reference Manual

const int TREE HEIGHT = 10

const int LIST WIDTH = 300

const int LIST HEIGHT = 10

// dx1 dialogs

DB dlg = null

// dxl elements

DBE dbeTree, dbelList, dbeSplitter
// create dialog

dlg = create("Test", styleCentered)
// tree

dbeTree = treeView(dlg, 0, TREE WIDTH,
TREE HEIGHT)

dbeTree->"top"->"form"
dbeTree->"left"->"form"
dbeTree->"bottom"->"form"
dbeTree->"right"->"unattached"
// list

dbeList = listView(dlg, 0, LIST WIDTH,
LIST HEIGHT, SARR DUMMY)

dbelList->"top"->"aligned"->dbeTree
dbelist->"left"->"unattached"
dbelist->"bottom"->"form"
dbelList->"right"->"form"

// splitter

dbeSplitter = splitter(dlg, dbeTree, dbelist,
dbeSplitter->"top"->"form"
dbeSplitter->"left"->"unattached"
dbeSplitter->"bottom"->"form"
dbeSplitter->"right"->"unattached"
realize dlg

{
// information is displayed over a single
// column

insertColumn (dbeList, 0, "Name", LIST WIDTH -

20, null)

4)

DXL Reference Manual

529

530

show dlg

frame

Declaration

DBE frame (DB box,
string label
[,int width,
int height])

Operation

Creates a frame element in box, which can contain other elements. The 1abel is the title of the frame; width and height
specify the size of the frame in pixels. If width and height are omitted, the frame expands to fit the elements within it.

Example

This example creates a tab strip and frame, and places the frame inside a tab.
const string tabStrings[] = {"A", "B", "C"}

DB box = centered "Example"

DBE theTab

DBE theFrame

void tabCb (DBE xx) {
int 1 = get xx

if (1 == 0) {
show theFrame
} else {
hide theFrame

}
theTab = tab(box, tabStrings, 300, 300, tabCb)

// attach all the edges of the tabstrip to the
// form

theTab->"left"->"form"
theTab->"right"->"form"
theTab->"top"->"form"
theTab->"bottom"->"form"

theFrame = frame (box, "A frame", 100, 100)
// place the frame inside the tabstrip
theFrame->"left"->"inside"->theTab

theFrame->"right"->"inside"->theTab

DXL Reference Manual

531

theFrame->"top"->"inside"->theTab
theFrame->"bottom"->"inside"->theTab

realize box

// ensure widgets are showing for correct tab
tabCb theTab

show box

fileName

Declaration

DBE fileName (DB box,
[string label,]
[,string initFileName
[,string extension,
string description
[,bool readOnlylll])
Operation

Creates a window-wide element inside the specified dialog box for capturing a file name. As in other Rational DOORS
windows, there is a field for the file name and a button, Browse, to invoke a file selector window. Optionally, the element is
called 1abel.

When present, the 1nitFileName argument provides an initial value, which can be an absolute or relative path.

The fourth and fifth optional arguments allow you to specify a file extension and description, which fill the File of type
box. Note that not all platforms make use of this additional information.

When the readOnly argument is true, it checks the Open as read-only box. Note that not all platforms make use of
this additional information.

Example

// basic file name

DBE fn = fileName (loader, "input.dat")
// file spec and description added

DBE fn = fileName (load, "input.dat", "*.dat",
"Data files")

DXL Reference Manual

532

field

Declaration

DBE field (DB box,
string label,
string initial,
int width
[,bool readOnly])
Operation

Creates a single-line text-field element. The parameters define a label, an initial value, the number of characters that are
visible in the field, and whether the field is read only (£ rue means read only). If the last argument is omitted, the function
creates a read-write field.

The width of the resulting element is independent of the default user interface font on the cutrent platform.

Example
DB fieldBox = create "Get Zip"
DBE zip = field(fieldBox, " Zipcode: ", "", 12)

void unzip (DB fieldBox) {
string zipcode = get zip
print zipcode

} // unzip

apply (fieldBox, "Lookup", unzip)

show fieldBox

richField

Declaration

DBE richField (DB box,
string label,
string initial,
int width
[,bool readOnlyl])

DBE richField (DB box,
string label,
richText (string initial),
int width)

DBE richField (DB box,
string label,
richText (string initial),
int width,
bool readOnly)

DXL Reference Manual

533

Operation
Creates a single-line rich text field element.

In the first form, arguments define a label, an initial value, the number of characters in the field, and whether the field is read
only (true means read only). If the last argument is omitted, the function creates a read-write field.

The second form takes a rich text string for the initial value; it cannot create a read only field.

The third form takes a rich text string for the initial value. If readOnly is true, the function creates a read only field. If
readOnlyis false, the function creates a read-write field.

The width of the resulting element is independent of the default user interface font on the current platform.

slider

Declaration

DBE slider (DB box,
string label,
int initial,
int min,

int max)

Operation

Creates a slider element for capturing integers. The arguments passed specify a label, the initial value and the minimum and
maximum values on the slider.

Sliders are best used for small ranges such as percentages. For larger numbers, or those without limits, it is better to use a
text field and the intOf function to convert the string value to an integer.

Example
DB percentBox = create "Your Feedback"
label (percentBox, "How strongly do you agree?")

DBE feelings = slider (percentBox, "Adjust
slider:", 50, 0, 100)

DBE output = field(percentBox, "Output:", "", 30,
true)

void calc (DB percentBox) {
int results = get feelings
print results
set (output, results "")

} // calc

apply (percentBox, "Commit", calc)

show percentBox

DXL Reference Manual

534

checkBox

Declaration

DBE {verticalC|c}heckBox (DB box,
string label,
string choices|[1,
int initial)
Operation
Creates a set of check boxes.

Check boxes offers users choices, each of which can independently be either on or off.

The checkBox function atranges the check boxes horizontally; the verticalCheckBox function arranges them
vertically. The options ate passed in string array choices. The initial and returned values are bit maps indicating
whether each option is checked. If the first option is checked, bit 0 is 1, if the second is checked bit 1 is 1, and so on.

Example
DB pizzaBox = create "Pizzas"

string toppings[] = {"salami", "funghi",
"olives", "anchovies",
"frutti di mare",
"artichoke"}

int maxToppings = 5

DBE pizzaCheck = checkBox (pizzaBox, "Toppings:",
toppings, 5)

bool pizzasOrdered[] = {false, false, false,
false, false, false}

void processOrders (DB pizzaBox) {
int bitmap = get pizzaCheck
// bit-map of values

int remain
int i

for i in O:maxToppings do {

remain = bitmap % 2 // remainder
if (remain != 0) {
pizzasOrdered[i] = true

print toppings[i] ":"
pizzasOrdered[i] "\n"
} else {
pizzasOrdered[i] = false

}

bitmap = bitmap / 2 // integer division

DXL Reference Manual

535

}
} // processOrders
apply (pizzaBox, "Order Pizzas", processOrders)

show pizzaBox

radioBox

Declaration

DBE {verticalR|r}adioBox (DB box,
string label,
string choices|[1,
int initial)

Operation

Creates a set of radio boxes.

Radio boxes offers users choices that are mutually exclusive.

The radioBox function arranges the check boxes horizontally; the verticalRadioBox function arranges them
vertically. The options ate passed in string array choices. The initial and returned values are indexes into that array.

Example

DB dinnerBox = create ("Dinner")

string meals([] = {"Pizza", "Pasta", "Quiche",
"Burger", "Tachos"}

DBE dinnerRadio = radioBox (dinnerBox, "Main

Course: ", meals, 2)

void placeOrder (DB dinnerBox) {

int i = get dinnerRadio

string mealStr = meals([i]

ack "Ordering " mealStr " now!"
} // placeOrder

apply (dinnerBox, "Order", placeOrder)

show dinnerBox

toggle

Declaration

DBE toggle (DB box,
string label,
bool initial)

DXL Reference Manual

536

Operation

Creates a toggle button in box with the given label and initial value.
Example

DB parseBox = create "Simulator File Parser"

DBE binOpt = toggle (parseBox, "Use binary data",
false)

show parseBox

date
Declaration
DBE date (DB date db, int width, Date init, bool calendar)
Operation
Creates a date/time picker control. Width specifies the width in characters of the displayed field. The variable init
specifies the initial date value displayed by the control. If a null date value is supplied, the current date and time is displayed.
If calendaris true, a drop-down calendar is made available in the control for selecting dates. Otherwise, up and down
buttons in the control allow the user to increment and decrement values in the selected field of the control.
You can type values into the various fields of the control, and use the cursor arrow keys to select fields and increment or
decrement values.
The date values are displayed according to Rational DOORS conventions: date/time values are displayed using the uset’s
default short date format for the current user locale, and a 24-hour clock format. Date-only values are displayed using the
user’s default long date format for the current user locale.

setLimits

Declaration
void setLimits (DBE date dbe, Date min, Date max)

void setLimits (DBE date dbe, AttrType type)

Operation

Sets the minimum and maximum limit values for a date/time picker control. If the curtent value displayed in the picker lies
outside either of the new limits, it is updated to equal that limit. If either one of the supplied values is null, then the relevant
min/max limit is not changed.

The second form sets the minimum and maximum limit values for a date/time picker control to match the limits defined
for the specified attribute type. The current displayed value is updated if necessary to lie within the limit or limits.

DXL Reference Manual

537

getDate

Declaration

Date getDate (DBE date dbe)

Operation
Returns the date value displayed in the specified DBE.

set

Declaration
void set (DBE date dbe, Date value)

void set (DBE date dbe, string value)

Operation
Updates the DBE to display the specified date value.

The second form of the perm is updated to put the string (interpreted according to the current user locale) into the date
DBE. No update occurs if the supplied string is not a valid date string.

get

Declaration
string get (DBE date dbe)

Operation
Returns the displayed string in a date DBE.

getBuffer

Declaration
Buffer getBuffer (DBE date dbe)

Operation
Returns the displayed string from a date DBE as a buffer.

setFromBuffer

Declaration
void setFromBuffer (DBE date dbe, Buffer b) / set (DBE,Buffer)

DXL Reference Manual

538

Operation

Updates the DBE to display the date represented by the string in the supplied buffer, interpreted according to the current
user locale. The DBE is not updated if the supplied string is not a valid date string.

Example

The following example uses the perms for the new data DBE element:

// DateTime Picker Test: gets and sets date values.

DB db = create "date/time picker test" // The Dialog

Date init = dateAndTime (today) // Initial value in control
label (db, "picker:")

beside db

DBE picker = date(db,20,init, true) // Define the control

// Callback for toggle...
void showTimeCB (DBE x)
{

if (get(x))

{

set (picker,dateAndTime (getDate picker))

else

set (picker,dateOnly (getDate picker))

// Toggle the showing of date+time or date-only
DBE showTime = toggle(db, "show time", includesTime (init))

set (showTime, showTimeCB)

// Text field to display values got from the control, and for
// sending to the control.
left db

DBE stringVal = field(db,"string field:","",20)

DXL Reference Manual

// Get the current value from the control, as a Date value.

void getDate (DBE x)
{
Date d = getDate (picker)
set (stringVal, stringOf (d))
}
button (db, "Get Date",getDate)

beside db

// Get the current value from the control, as a string.
void getString (DBE x)
{
string s = get (picker)
set (stringVal, s)
}
button (db, "Get string",getString)

// Get the current value from the control, as a Buffer.
void getDateBuffer (DBE x)
{
Buffer b = getBuffer (picker)
set (stringVal, b)
delete b
}
button (db, "Get Buffer",getDateBuffer)

left db

// Update the control using a Date value
void setDate (DBE Xx)
{
string s = get(stringVal)
Date d = date(s)
if (null d) warningBox "Not a valid date string!"

else set(picker,d)

DXL Reference Manual

539

540

set (showTime, includesTime (getDate picker))
}
button (db, "Set Date", setDate)

beside db

// Update the control using a string value
void setString (DBE x)
{

string s = get(stringVal)

set (picker, s)

set (showTime, includesTime (getDate picker))

}
button (db, "Set string", setString)

// Update the control using a Buffer value
void setDateBuffer (DBE x)
{
Buffer b = getBuffer(stringVval)
setFromBuffer (picker,b)
set (showTime, includesTime (getDate picker))
delete b
}
button (db, "Set Buffer", setDateBuffer)
left db

Date minDate = null

Date maxDate = null

// Set the minimum value accepted by the date/time picker
void setMinVal (DBE x)
{

string s = get(stringVal)

minDate = date(s)

if (null minDate)

{

DXL Reference Manual

warningBox "Not a valid date string!"

}

else if (!'null maxDate && minDate > maxDate)

{

warningBox "Minimum date cannot be greater than maximum date."

else

setLimits (picker,minDate, maxDate)

}
button(db, "Set Min from field", setMinVval)
beside db

// Set the maximum value accepted by the date/time picker

void setMaxVal (DBE Xx)
{
string s = get(stringVal)
maxDate = date(s)
if (null maxDate)
{
warningBox "Not a valid date string!"

}

else if (!'null minDate && minDate > maxDate)
{

warningBox "Maximum date cannot be less than minimum date."
else

setLimits (picker,minDate, maxDate)

}
button (db, "Set Max from field", setMaxVal)
show db

DXL Reference Manual

541

542 ‘

Choice dialog box elements

This section defines functions and for loops that allow you to create elements that give the user a choice:
* A drop-down selector provides a simple choice.

* A combo box is an editable drop-down selector.

* A tab strip provides a simple choice where other options must be selected after the initial selection.

* Scrollable lists are a powerful mechanism for providing users with a large number of options.

These dialog box elements are all of type DBE.

choice

Declaration

DBE choice (DB box,
string label,
string choices| 1,
[int noOfChoices,]
int initial
[,int width,
bool canEdit])

Operation

Creates a drop-down selector. This shows only the current value until the user clicks in it, when the whole range is
displayed. The initial argument specifies which value is selected by default, counting from 0.

The string array choices must have been declared at a fixed size, with each element containing a string. The optional
noOfChoices argument specifies the number of elements of the choices array that contain real choices.

The optional width argument specifies the number of characters in the choice box. When used, this argument must be
followed by a boolean value to indicate whether the choice can be edited by the user. If canEdit is true, the choice box
is editable (a combo box). If width is 0, -1, or omitted, the standard width is used.

The width of the resulting element is independent of the default user interface font on the current platform. The width will
be consistent with the legacy behavior on Western platforms with regard to the resultant width calculated from the specified
number of characters.

Example

DB regBox = create "Edit Requirement"

string importance[] = {"Vital", "Useful",
"Convenient", "Useless"}

DBE regImport = choice(regBox, "Importance: ",

importance, 2)

DXL Reference Manual

void accept (DB regBox) {
int i = get reglmport
print importance([i]

} // accept

ok (regBox, "Accept", accept)

show regBox

tab

Declaration

DBE tab (DB box,
string choices|[]
[,int noOfChoices]
[,int width,
int height],
void (DBE theTab))

Operation

Creates a tab strip. This function behaves much like the list function.

The string array choices must have been declared at a fixed size, with each element containing a string. The optional
noOfChoices argument specifies the number of elements of the choices array that contain real choices.

The optional width and height arguments specify the initial size of the tab strip in pixels. If width and height are

not specified, the size is controlled by the elements the tab strip contains, or from the form if the tab strip is connected to it.

If the right edge of a tab strip is to remain unattached, you must specify a size. A tab strip with an initial size can stretch if

placement constraints are incompatible with the size specified.

You can place other dialog box elements inside a tab strip using the placement keyword inside, but you should not put
an element with no innate size (like a list box) inside a tab with no innate size. For further information on tab strip
placement, see “Attachment placement,” on page 603.

The callback function must identify which tab has been selected.

Example
DB box = create "Test"

vold tabSelected (DBE theTab) {
int 1 = get theTab
}

string items([] = {"a", "B", "C"}

DBE theTab = tab(box, items, 300,
tabSelected)

theTab->"top"->"form"
theTab->"left"->"form"

theTab->"bottom"->"form"

400,

DXL Reference Manual

543

544

theTab->"right"->"unattached"

list

Declaration

DBE list (DB box,
string label,
[int width,]
int visible,
string values|[]
[,int noOfValues])

Operation

Creates a list element containing the given values, from which the user can choose at most one item. If there are many or a
variable number of options, a list is better than a choice as it does not attempt to display more than the number of items
passed in the visible argument. If the width argument is present, the element is created at the specified size in pixels.
Otherwise, the list is created to use the full width of the dialog box.

You can supply either a complete array of strings, such as a constant array, or a partially filled array, with the number of
items supplied in the noOfValues argument. You can create a list with initially no entries by setting noOfValues to 0,
although you must still supply a valid string array.

Note that there is no initial selection; to do this, use the set (value or selection) function. You can also define
callbacks for lists.

Example
DB coffeeBox = create "Coffees"

string coffees[] = {"Mocha", "Sumatra Blue",
"Jamaica Mountain",
"Mysore", "Kenya", "Java"}

DBE coffeelist = list(coffeeBox, "Choose one
of:", 5, coffees)

void getCoffees (DBE coffeelist) {

int i = get coffeelist

if (i == 0) ack "Mmm, Mocha..."

if (i == 5) ack "Watch out for trademark
violations"

} // getCoffees
// run callback directly upon list selection
set (coffeelist, getCoffees)

show coffeeBox

DXL Reference Manual

545

multiList

Declaration

DBE multiList (DB box,
string label,
[int width,]
int visible,
string values|[]
[,int noOfValues])

Operation

Creates a list element containing the given values, from which the user can choose one or more items. In all other respects
this function is exactly the same as the 1ist function.

Example

DB attrShow = create "Attributes"
string attrNames[100]

int noOfAttrs = 0

string an

if (null current Module) {
ack "Please run this function from a module"
halt

}

for an in current Module do
attrNames [noOfAttrs++] = an

DBE attrList = multilList (attrShow, "Attributes:",
5, attrNames, noOfAttrs)

void printAttrs (DB box) {
string attrName

for attrName in attrList do {
print attrName " = " ((current
Object) .attrName) "\n"

}
} // printAttrs

apply (attrShow, "Print", printAttrs)
void clearSelection (DB box) {

int i

for i in 0:noOfAttrs do

set (attrList, i, false)
} // clearSelection

apply (attrShow, "Clear", clearSelection)

DXL Reference Manual

546

show attrShow

selectedElems

Declaration

int selectedElems (DBE listView)

Operation
Returns the number of elements currently selected in the specified list view.

Typically this is either 0, 1 or a positive integer (if the list view was created using the 1istViewOptionMultiselect
style).

If the DBE is not a list view, a run-time error occurs.

for value in list (selected items)

Syntax

for s in 1list do {

where:

s is a string variable

list is a multilist of type DBE
Operation

Assigns the string s to be each successive selected item in a multilist, 11 st.
Example
string at

for at in attrList do print at " is selected\n"

for position in list (selected items)

Syntax

for i in 1ist do {

DXL Reference Manual

547

where:
1 is an integer variable
list is a multilist of type DBE
Operation

Assigns the integer 1 to be the index of each successive selected item in a multilist, 11 st.
Example

int totalWeight = 0

int index

for index in components do
totalWeight += compWeights[index]

View elements

This section defines functions and for loops that allow you to create list views and tree views in your dialog boxes.

Drag-and-drop

Drag-and-drop operations are possible in list views and tree views, provided a callback function is specified when the list
view or tree view is created. The callback takes the form:

void callback (DropEvent dropEvent)

The DropEvent structure is unique to the source of the drag; it exists for only as long as the dialog box element being
dragged.

Properties are defined for use with the . (dot) operator and DropEvent structure to extract information about drop
events, as shown in the following syntax:

dropEvent.property

where:
dropEvent is a variable of type DropEvent
property is one of the drag-and-drop properties

The following tables list the properties and the information they extract:

String property Extracts

sourcePath The path of the source item of a drag operation; this is only valid
if sourceIsListView is true, otherwise, itis null.

DXL Reference Manual

548

String property

Extracts

targetPath

The path of the target item of a drag operation; this is only valid if
targetIsListViewis true, otherwise, itis null.

Boolean property

Extracts

sourcelsTreeView Whether the source of the drag is a tree view.

sourcelsListView Whether the source of the drag is a list view.

targetIsTreeView Whether the target of the drag is a tree view.

targetIsListView Whether the target of the drag is a list view.

Integer property Extracts

sourceIndex The index of the source item of a drag operation; this is only valid
if sourceIsListView is true, otherwise, it is —1.

targetIndex The index of the target item of a drag operation; this is only valid
if targetIsListView is true, otherwise, it is —1.

DBE property Extracts

source The source dialog box element of the drag operation; this is
always the element for which the callback was defined.

target The target dialog box element of the drag operation.

Example

DropEvent de

bool b = de.targetIsTreeView

DBE testList = de.source

DXL Reference Manual

listView

Declaration

DBE listView (DB box

[,void callback (DropEvent event],

int options,
int width,
int Iines,
string items]|

[,int noOfItems])

Operation

Creates a list view having the specified width in pixels and with the specified number of lines.

The optional callback function enables the list view to participate in drag-and-drop events. When this list view is the source
of a drop operation, the callback fires and the DropEvent structure can be queried. For further information, see
“Drag-and-drop,” on page 547. If the callback function is not supplied, the user cannot use drag-and-drop in the list view.

The string array 1 tems must have been declared at a fixed size, with each element containing a string. The optional
noOfItems argument specifies the number of elements of the i tems array that contain real choices.

The argument options controls whether the list view has check boxes. The value can be one of the following:

listViewOptionCheckboxes
listViewOptionMultiselect
0

listViewOptionCheckboxes |
listViewOptionMultiselect

listViewOptionSortText

provides check boxes
makes it possible to select more than one item*
no check boxes or multi-select capability

provides check boxes and multi-select capability

for use with the setSortColumn perm

*Beginning in Rational DOORS version 9.6.1.7, you can use Ctrl+A keys to select all items in a multiselect listView.

deleteColumn

Declaration

string deleteColumn (DBE listView,
int columnIndex)

Operation

Deletes from 11istView the column identified by columnIndex counting from 0. This works only for list views.

DXL Reference Manual

549

550

insertColumn(list view)

Declaration

void insertColumn (DBE listView,
int columnIndex,
string title,
int width,
Icon icon)

Operation

Inserts a column in 11 stView after the column identified by columnIndex counting from 0. The new column has title
title, width in pixels of width, and icon icon. To insett a column without an icon use the value iconNone. For
other valid icon values, see “Icons,” on page 485.

This works only for list views.

getColumnValue

Declaration

string getColumnValue (DBE listView,
int row,
int column)

Operation

Returns the value of the item or subitem identified by row in column. Both rowand column count from 0. This works
only for list views.

Example
This example returns the 34th row of the first column in list view main.
string s = getColumnValue (main, 33, 0)
getCheck
Declaration

bool getCheck (DBE listView,
int index)

Operation

Returns true if the check box identified by index is selected; otherwise, returns false. This works only for list views.

DXL Reference Manual

551

setCheck

Declaration

void setCheck (DBE listView,
int index,
bool checked)

Operation

Selects or clears the check box identified by index according to the value of checked. This works only for list views.

getSortColumn

Declaration

int getSortColumn (DBE listView)

Operation

Returns the column in 11istView that is being sorted. This works only for list views.

setSortColumn

Declaration

void setSortColumn (DBE listView,
int columnIndex)

Operation

Sets the column to be sorted to the column specified by columnIndex. This works only for list views.

treeView

Declaration

DBE treeView (DB box
[,void callback (DropEvent event)],
int options,
int width,
int visible)

Operation

Creates a tree view having the specified width in pixels and with the specified number of visible items (which controls the

height of the tree view).

DXL Reference Manual

552

The optional callback function enables the list view to participate in drag-and-drop events. When this list view is the source
of a drop operation, the callback fires and the DropEvent structure can be quetied. For further information, see
“Drag-and-drop,” on page 547. If the callback function is not supplied, the user cannot use drag-and-drop in the list view.

The options argument can be 0 or treeViewOptionSorted, which sorts the tree view.

exists(tree view)

Declaration

bool exists (DBE treeView,
string fullPath)

Operation

Returns true if a fullPath is the full path name of a tree view; otherwise, returns false.

layoutDXL

Declaration

void layoutDXL (DBE treeView)

Operation

Loads the specified tree view with a hierarchy of DXL files, which can be used for column layout DXL

If the DBE is not a tree view, a run-time error occufrs.

attributeDXL

Declaration

vold attributeDXL (DBE treeView)

Operation

Loads the specified tree view with a hierarchy of DXL files, which can be used for DXL attribute.

If the DBE is not a tree view, a run-time error occurs.

getDXLFileHelp, getDXLFileName

Declaration
string getDXLFileHelp (DBE treeView)

string getDXLFileName (DBE treeView)

DXL Reference Manual

553

Operation

These functions assume that the specified tree view contains a hierarchy of DXL files loaded using the 1ayoutDXL
function (similar to the contents of the DXL Browser dialog box). If one of the files is selected, and you call either of these
functions, typically from a button callback, they behave as described here.

The first function returns the help text associated with the selected DXL file.
The second function returns the name of the selected file.

If the dialog box element is not a tree view, a run-time error occurs.

templates

Declaration
void templates (DBE treeView)

Operation

Populates the specified tree view with a hierarchy of available templates (DXL files) that are in the
lib\dxl\standard\ template directory.

getTemplateFileName

Declaration
string getTemplateFileName (DBE treeView)

Operation

Assumes that the specified tree view contains a hierarchy of available templates previously loaded using the templates
function.

When a template is selected on a user’s PC or workstation, returns the full path of the selected file. Otherwise, returns a null
strlng.

Example

// prevent dxl timeout dialog

pragma runlLim, O

// constants

500

const int INITIAL TREE WIDTH

const int INITIAL TREE HEIGHT 20
// dx1 dialog

DB dlg = null

// dxl elements

DBE dbeTree, dbelLabel

// function

DXL Reference Manual

554

void fnTreeSelect (DBE xx)
{

string sTemplate = getTemplateFileName (xx)

// only relevant if actual template was
// selected

if (sTemplate != null)
{

// inform user
infoBox (dlg, sTemplate)

}
dlg = create (dbExplorer, "Templates", styleCentered | styleFixed)
// label

dbelabel = label (dlg, "Please select an item from
the tree...")

dbelabel->"top"->"form"
dbelLabel->"left"->"form"
dbelabel->"right"->"unattached"
dbeLabel->"bottom"->"unattached"
// tree view

dbeTree = treeView(dlg, 0, INITIAL TREE WIDTH, INITIAL TREE HEIGHT)
dbeTree->"top"->"spaced"->dbeLabel
dbeTree->"1left"->"form"
dbeTree->"right"->"form"
dbeTree->"bottom"->"form"

realize dlg

{
// callbacks
set (dbeTree, fnTreeSelect)

// load templates into tree view

templates (dbeTree)
}

block dlg

DXL Reference Manual

555

for value in list view (selected items)

Syntax
for s in listView do {
}
where:
s is a string variable
listView is a list view of type DBE
Operation

Assigns the string s to be each successive selected item in a list view.

for position in list view (selected items)

Syntax
for 1 in listView do {
}
where:
i is an integer variable
listView is a list view of type DBE
Operation

Assigns the integer 1 to be the index of each successive selected item in a list view, 1istView.

Text editor elements

This section defines text editor functions, which allow you to create a full function text editing panel in your dialog box.

These have the same functions as all Rational DOORS text panels, including pop-up menu support for loading and saving
files.

DXL Reference Manual

556 ‘

text(box)

Declaration

DBE text (DB box,
string label,
string initial,
[int width,]
int height,
bool readOnly)

Operation

Creates a multi-line text element in the dialog box box. The arguments define a label, an initial value, the width of the text
box in pixels, the height of the text box in pixels, and whether the text box is read only (t rue means the user cannot
modify the contents of the text box). If width is omitted, the box takes the full width of the window.

Example

void sendRID (DB RIDbox) {
// process RID in some way
} // sendRID

DB RIDbox = create "Review Item Discrepancy"
DBE response = text (RIDbox, "Your response:", "",
200, false)

apply (RIDbox, sendRID)

show RIDbox

richText(box)

Declaration

DBE richText (DB box,
string label,
{string
initial|richText (string initial)},
int width,
[int height,]
bool readOnly)

Operation

Creates a multi-line rich text element in the dialog box box. The arguments define a label, an initial value (which can be rich
text), the width of the text box in pixels, the height of the text box in pixels, and whether the text box is read only (t rue
means the user cannot modify the contents of the text box). If height is omitted, the box takes the full height of the
window.

If the blinking cursor appears at the end of the text in the box when it is displayed, append “* to the end of the rich text
string before passing it to the perm.

DXL Reference Manual

557

home

Declaration

void home (DBE textElem)
Operation

Causes the cursor to go to the first character in textElem.

Example

home messageArea

modified

Declaration

bool modified (DBE textElem)

Operation

Returns true if the text in textElem has been modified since it was last set.

Example

if (modified errorlLog && confirm
"Save error log changes?")
saveErrorLog

get(selected text)

Declaration

bool get (DBE textElem,
int &first,
int &last)

Operation

Returns the selection indices for a text element. If there is a selection, the function returns t rue, and sets the first and
last arguments to the zero-based indices of the first character and the character immediately after the last one selected.

If there is no selection, the function returns false.
Example

DB splitBox = create "Text splitter"

DBE objTextElem = text (splitBox, "Object text:",
"1234567890", 200, false)

DXL Reference Manual

558

void getSelection (DB splitBox) {
int first, last

if (get(objTextElem, first, last)) {
string ot = get objTextElem
string selection = ot[first:last-1]
print "You selected:\n" selection "\n"

} else {
print "No selection\n"

}

} // getSelection

apply (splitBox, "Get selection", getSelection)
show splitBox

Buttons

This section defines functions that allow you to create buttons on dialog boxes. Rational DOORS dialog boxes provide two
kinds of buttons: those across the bottom of the dialog box, and those that appear in the dialog box area itself.

ok

Declaration

DBE ok (DB box,
[string label,]
void callback (DB))

Operation

Adds a button to the row of standard buttons on the dialog box, and associates it with the given callback function. If the
label argument is passed, the button has that label; otherwise it has the standard label OK.

When the user clicks the button, the function is called with the parent dialog box as the argument, and the dialog box is

removed from the screen.

Example

volid writeout (DB box) {
// user code here
} // writeout

ok (fileOpBox, "Write", writeout)

DXL Reference Manual

apply

Declaration

DBE apply (DB box,
[string label,]
void callback (DB))
Operation

Adds a button to the row of standard buttons on the dialog box, and associates it with the given callback function. If the
label argument is passed, the button has that label; otherwise it has the standard label Apply.

When the user clicks the button, the function is called with the parent dialog box as the argument. The dialog box remains
on the screen, enabling this or other buttons to be clicked.

Example

void sumAttrs (DB box) {
// user code here

}

apply (analysisBox, "Calculate", sumAttrs)

close

Declaration

void close (DB box,
bool includeButton,
void closeAction(DB))

Operation

Normally a Close button is added to the row of standard buttons on a dialog box. The normal action of the Close button is
to close the dialog box.

If the includeButton argument is false, the Close button is omitted from the dialog box, although the user can still
close the window via the window manager or system menu. This enables you to supply a close-action button that has an
alternative label.

Because closing the dialog box might not always be desirable behavior, this function enables you to replace the standard
close action with a callback function. When a callback function is supplied, windows are not automatically closed; the
callback must explicitly hide the dialog box (see the hide (dialog box) function).

Example
DB exBox = create "Example"

DBE tp = text (exBox, "Text", "Type in here", 100,
false)

DBE check = toggle (exBox, "Check before closing",
true)

DXL Reference Manual

559

560

void checkText (DB exBox) {

if (modified(tp) && !confirm("Text modified,
really close?"))
return

hide exBox
} // checkText
ok (exBox, "Cancel", checkText)
close (exBox, false, checkText)

show exBox

button

Declaration

DBE button (DB box, string label,void callback (DBE)) [,bool
variableSize|int style])

DBE button (DB box, string label, void callback [, bool variableSize | int style
[, int width]])

Operation

Creates a button in the specified dialog box. The callback function fires whenever the user clicks on the button.

The button can have either a label or an arrow symbol defined by one of the following constants in “ok, apply,
button(arrows),” on page 561.

The optional fourth argument enables you to specify the size or style of the button.

If variableSizeis false, the button is 50 pixels wide by 13 pixels high. If variableSize is missing or true, the
button size depends on the label.

The possible values for style are: styleIsDefault, styleIsCloseBtn, styleStandardSize,orany OR
combination of these values.

The second variant has an optional width argument that enables the user to specify the width of the button, in pixels. (As
a guide, standardSize buttons are 50 pixels wide.) This argument has no effect if the variableSize argument is
specified as false, orif the style argument is specified and includes the standardSize option.

Example
DB resultsBox = create "Summary Results Display"
DBE caption

void repaint (DBE canv) {
background (canv, colorLightBlue)
color (canv, colorMaroon)
string cap = get caption
draw (canv, 100, 50, cap)
} // repaint

DXL Reference Manual

561

DBE canv = canvas (resultsBox, 400, 100, repaint)

caption = field(resultsBox, "Caption:",
"Callbacks will plot data", 20)

beside resultsBox

void trendPlot (DBE calledfrom) {
// user code here
repaint canv

} // trendPlot

DBE trends = button (resultsBox, "Show trends", trendPlot)

show resultsBox

ok, apply, button(arrows)

Both standard and dialog-area buttons can be created with an arrow instead of a text label. To do this, replace the string
label with one of the following constants:

topLeftArrow
UPArrow
topRightArrow
leftArrow
allWaysArrow
rightArrow
bottomLeftArrow
downArrow
bottomRightArrow
leftRightArrow

upDownArrow

Example

DB arrowBox = create "Arrow Demo"
void doNothing (DBE x) {}

void doNothing (DB x) {}

DBE tl = button (arrowBox, topLeftArrow,
doNothing)

beside arrowBox
DBE up = button (arrowBox, upArrow, doNothing)

DBE tr = button (arrowBox, topRightArrow,
doNothing)

DXL Reference Manual

562

leftAligned arrowBox
DBE 1 = button (arrowBox, leftArrow, doNothing)
beside arrowBox

DBE all = button (arrowBox, allWaysArrow,
doNothing)

DBE r = button (arrowBox, rightArrow, doNothing)
leftAligned arrowBox

DBE bl = button (arrowBox, bottomLeftArrow,
doNothing)

beside arrowBox
DBE down = button (arrowBox, downArrow, doNothing)

DBE br = button (arrowBox, bottomRightArrow,
doNothing)

leftAligned arrowBox
apply (arrowBox, leftRightArrow, doNothing)
apply (arrowBox, upDownArrow, doNothing)

show arrowBox

Canvases

This section defines functions for canvases, which allow DXL programs to draw graphics, such as charts and diagrams, in
dialog boxes.

Any graphics layout DXL should always specify all co-ordinates in drawing units (du), for example:
rectangle (myCanv, 10 du, 10 du, 20 du, 20 du)

Otherwise the graphics do not print properly.

Keyboard event constants

Declaration

const char keyInsert
const char keyDelete
const char keyHome
const char keyEnd
const char keyPageUp

const char keyPageDown

DXL Reference Manual

563

const char keyUp
const char keyDown
const char keyLeft
const char keyRight
const char keyHelp
const char keyFl
const char keyF2
const char keyF3
const char keyF4
const char keyF5
const char keyF6
const char keyF7
const char keyF8
const char keyF9
const char keyF10
const char keyFl1l

const char keyF12

Operation

These are character constants that represent keyboard presses for invisible characters. They are returned by callbacks
defined using set.

canvas

Declaration

DBE canvas (DB box,

int width,

int height,

void repaint (DBE art))
Operation

Creates a drawing surface, which can be used for graphical output with the DXI. Graphics Library functions.

Graphics must only be directed to the canvas from the callback function, repaint, which you must define, otherwise they
are lost at the next repainting. The function is called back when the window appears on the screen, when it is de-iconified,
or when an overlapping window is moved.

To add a mouse or key callback to a canvas, use the set (select) function.

Example

DB artBox = create "Try resizing this window"

DXL Reference Manual

564

void doDrawing (DBE art) {
// repaint callback function
int i, %, y, w, h
int cw = width art
int ch = height art

for i in 0 : 15 do {
color (art, 1)

x = random cw // size graphics to canvas
y = random ch

w = (cw - x) / 2

h = (ch -vy) / 2

rectangle (art, x, vy, w, h)

}
DBE art = canvas (artBox, 400, 300, doDrawing)

show artBox

background

Declaration

void background (DBE canvas,
int colorNo)

Operation

Colors the whole of the canvas with the given color. For information on valid color numbers, see “Logical colors,” on page
593. This function destroys any existing drawing, and is equivalent to drawing a rectangle the size of the canvas. This
function is recommended if you wish to color the whole canvas or erase the current image.

Example
DB graphBox = create "Graphics"

void repaint (DBE graph) {
background (graph,
logicalMediumIndicatorColor)
// draw picture here
} // repaint

DBE graph = canvas (graphBox, 250, 75, repaint)

show graphBox

realBackground

Declaration

void realBackground (DBE canvas,
int colorNo)

DXL Reference Manual

565

Operation

Colors the whole of the canvas with the given color. For information on valid color numbers, see “Real colors,” on page
595. This function destroys any existing drawing, and is equivalent to drawing a rectangle the size of the canvas. This
function is recommended if you wish to color the whole canvas or erase the current image.

Example
DB colorBox = create "To demonstrate the colors"

void doDrawing (DBE colorCanvas) {
// repaint callback function
// background (art, logicalPageBackgroundColor)

realBackground (colorCanvas, realColor Black)
color (colorCanvas, logicalPageBackgroundColor)

draw (colorCanvas, 15, 15,
"logicalPageBackgroundColor")

realColor (colorCanvas, realColor Green)
draw (colorCanvas, 15, 45, "Red")
realColor (colorCanvas, realColor Magenta)

draw (colorCanvas, 15, 60, "Magenta")

}

DBE colorCanvas = canvas (colorBox, 400, 300, doDrawing)
show colorBox // draw picture here

color
Declaration

void colo[u]r (DBE canvas,
int colorNo)

Operation

Sets the drawing color for the canvas to be the given colorNo. For information on valid color numbers, see “Logical
colors,” on page 593.

Example

color (board, logicalDataTextColor)

realColor

Declaration

void realColo[u]r (DBE canvas,
int realColor)

DXL Reference Manual

566

Operation

Sets the drawing color for the canvas to be the given realColor. For information on valid color numbers, see “Real
colors,” on page 595.

Example

See the example for the realBackground function.

font

Declaration

void font (DBE canvas,
int level,
int mode)

Operation

Sets the font for drawing strings on the canvas. The font is specified by two logical values corresponding to those in the
Font Options window. The 1evel argument is in the range 1 to 9 to represent the level in the tree at which a node
appears. Essentially, this argument controls the size; level 1 is the top level of heading and typically appears in a large
typeface. The mode argument controls which font is used: 0 sets body font, 1 sets heading font, and 2 sets graphics font.
You can also use the constants HeadingsFont, TextFont, and GraphicsFont.

Note: The actual font size and typeface depend on the user’s settings.

Example
DB graphBox = create "Graphics"

void repaint (DBE graph) {
background (graph, logicalPageBackgroundColor)
color (graph, logicalDataTextColor)
int x = 10
int fsize

for fsize in 1:9 do {
font (graph, fsize, 0)
draw (graph, x, 20, fsize "")
font (graph, fsize, 1)
draw (graph, x, 60, fsize "")
font (graph, fsize, 2)
draw (graph, x, 90, fsize "")
x += 20

}

} // repaint
DBE graph = canvas (graphBox, 300, 100, repaint)

show graphBox

DXL Reference Manual

567

height

Declaration

int height (DBE canvas
[,string s])

Operation

With a single argument, this returns the height of canvas. This function must be used in repaint functions to obtain the
size of the area into which to draw, as this might change.

When the second argument is passed, the function returns the height of the space required to render the string s in the

current font.
Example

This example obtains the height of the canvas:

int h = height board

width

Declaration

int width (DBE canvas
[,string s])

Operation

With a single argument, this returns the width of a canvas element. This function must be used in repaint functions to
obtain the size of the area into which to draw, as this might change.

When the second argument is passed, the function returns the width of the space required to render the string s in the

current font.

Example

This example obtains the width of the canvas:

int w = width board

This example obtains the height and width of the string variable message:
DB graphBox = create "Graphics"

void repaint (DBE graph) {
background (graph,
logicalMediumIndicatorColor)

color (graph, logicalHighIndicatorColor)

int w = width graph
int h = height graph
string message = w " by " h ""
int tw = width(graph, message)

DXL Reference Manual

568

int th = height (graph, message)
int x = (w - tw)/2
int y = (h - th)/2
draw (graph, x, y, message)
} // repaint

DBE graph = canvas (graphBox, 250, 150, repaint)

show graphBox

rectangle
Declaration
void rectangle (DBE canvas,
int x,
int y,
int w,
int h)

Operation

Draws a rectangle filled with the current color at position (x,y), width w, height h on canvas. The co-ordinate system has its
origin at the top left.

Example
DB graphBox = create "Graphics"
void repaint (DBE graph) {

background (graph,
logicalMediumIndicatorColor)

color (graph, logicalHighIndicatorColor)
rectangle (graph, 50, 50, 150, 50)

} // repaint

DBE graph = canvas (graphBox, 250, 150, repaint)

show graphBox

box
Declaration
void box (DBE canvas,
int x,
int y,
int w,
int h)

DXL Reference Manual

Operation

Draws an outline rectangle with the current color at position (x, y), width w, height h on canvas. The co-ordinate system
has its origin at the top left.

Example
DB graphBox = create "Graphics"
void repaint (DBE graph) {

background (graph,
logicalMediumIndicatorColor)

color (graph, logicalHighIndicatorColor)
box (graph, 50, 50, 150, 50)

} // repaint

DBE graph = canvas (graphBox, 250, 150, repaint)

show graphBox

line

Declaration

void line (DBE canvas,
int xI,
int yI,
int x2,
int y2)

Operation

Draws a line from (x1,y1) to (x2,y2) in the current color. The co-ordinate system has its origin is at top left.

Example
DB graphBox = create "Graphics"
void repaint (DBE graph) {

background (graph,
logicalMediumIndicatorColor)

color (graph, logicalHighIndicatorColor)
line (graph, 0, 0, width graph, height graph)
} // repaint
DBE graph = canvas (graphBox, 250, 150, repaint)

show graphBox

DXL Reference Manual

569

570

ellipse
Declaration
void ellipse (DBE canvas,
int x,
int y,
int w,
int h)

Operation

Draws an ellipse filled with the current color within the bounding box specified by position (x, y), width w, height h on
canvas. The co-ordinate system has its origin at the top left. If w and h are the same, this draws a circle.

Example
DB graphBox = create "Graphics"
void repaint (DBE graph) {

background (graph,
logicalMediumIndicatorColor)

color (graph, logicalHighIndicatorColor)

ellipse(graph, 0, 0, width graph, height
graph)

} // repaint
DBE graph = canvas (graphBox, 250, 150, repaint)

show graphBox

draw

Declaration

void draw (DBE canvas,
int x,
int y,
string s)
Operation

Draws the string s at position (X,y), in the current color with the current font. The co-ordinate system has its origin at top
left. The vertical position of the text is at the baseline of the font, so the co-ordinates must be the position for the bottom of
most characters. Characters with a descender, such as g, use height above and below the baseline.

Example
DB graphBox = create "Graphics"

void repaint (DBE graph) {

DXL Reference Manual

background (graph,
logicalMediumIndicatorColor)

color (graph, logicalHighIndicatorColor)

string message = (width graph) " by " (height
graph) nn

draw (graph, 10, 20, message)
} // repaint
DBE graph = canvas (graphBox, 250, 150, repaint)

show graphBox

drawAngle
Declaration
void drawAngle (DBE canvas,
int x,
int y,
string s

real angle)

Operation

Draws the string s rotated counter-clockwise by the given angle (in degrees). The rotation is centered around the baseline of

the font, at the start of the string.

Example

string message = "Hello world"

real angle

DB graphBox = create "drawAngle test"

void repaint (DBE graph) {
background (graph,
logicalMediumIndicatorColor)

color (graph, logicalHighIndicatorColor)
font (graph, 1, 1)
draw (graph, 0, 25, message)

for (angle = 0.0; angle < 360.0; angle +=
360.0 / 8.0)

drawAngle (graph, 130, 125, message,
angle)
}

DBE graph = canvas (graphBox, 300, 250, repaint)

show graphBox

DXL Reference Manual

571

572

polarLine
Declaration
void polarLine (DBE myCanvas,
int x,
int y,

int lineLength,
int IineAngle)
Operation

Draws a line on the specified canvas from the co-ordinates (x, y), with a length of 1ineLength at an angle of
lineAngle degrees to the horizontal. The horizontal starts at the 3 o’clock position, and the angle increases in a
clockwise direction.

Example
int offset = 0

void doDrawing (DBE myCanvas) {
int i =0
ellipse (myCanvas, 50, 50, 200, 200)

for (i = 0; 1 < 360; 1 += 20) {
polarLine (myCanvas, 150, 150, 100, i +
offset)
}

offset++

if (offset >= 20) offset = 0
}

DB myWindow = create "Example"
DBE myCanvas = canvas (myWindow, 300, 300, doDrawing)

show myWindow

polygon

Declaration

void polygon (DBE myCanvas,
int coordArray[1)

Operation

Draws a polygon on the specified canvas using successive co-ordinates held in the specified array.

DXL Reference Manual

573

Example

void doDrawing (DBE myCanvas) {
int count = 6
int coords|[8]

background (myCanvas,
logicalPageBackgroundColor)

color (myCanvas, logicalDataTextColor)

coords[0] = 20
coords[1l] = 20
coords[2] = 100
coords[3] = 30
coords[4] = 200
coords[5] = 100
coords[6] = 80
coords[7] = 150

polygon (myCanvas, coords)

}
DB myWindow = create "Example"

DBE myCanvas = canvas (myWindow, 300, 300,
doDrawing)

show myWindow

bitmap

Declaration

void bitmap (DBE myCanvas,
string fileName,
int x,
int y)

Operation

Draws the bitmap stored in the specified file, at co-ordinates (x,y) on the specified canvas. This is functionally equivalent to
calling loadBitmap, drawBitmap and destroyBitmap.

loadBitmap

Declaration

Bitmap loadBitmap (DBE myCanvas,
string fileName,
bool colorMap,
int& w,

inté& h)

DXL Reference Manual

574

Operation

Loads and caches, for the canvas myCanvas, the bitmap stored in file £11eName.

If colorMapis true a private color map is used; otherwise, the system color map is used.
Returns in w and h the width and height of the bitmap.

Returns the handle of the bitmap.

drawBitmap

Declaration

void drawBitmap (DBE myCanvas,
Bitmap myBitMap,
int x,
int y)

Operation

Draws the specified bitmap on the specified canvas at co-ordinates (x,y).

destroyBitmap

Declaration

void destroyBitmap (DBE myCanvas,
Bitmap bitMapHandle)

Operation

Destroys the specified bitmap cached for the canvas myCanvas.

export

Declaration

void export (DBE myCanvas,
string fileName,
string formatName)

Operation

Exports the specified canvas to the specified file in the specified format, which can be one of these values:

formatName Format Platforms
"EPS" Encapsulated PostScript® All
"EME" Enhanced Metafile Windows

DXL Reference Manual

575

formatName Format Platforms
"WME" Windows Metafile Windows
"PICT2" Macintosh native picture format All
"HTML" HTML to drive]ava® applet All
print
Declaration

void print (DBE myCanvas,
real hScale,

real vScale)

Operation

Prints the specified canvas, horizontally scaled by hScale and vertically scaled by vScale. The width of the printed
image is hScale times the width of the on-screen image. The height of the printed image is vScale times the height of
the on-screen image.

startPrintJob, endPrintJob

Declaration
void startPrintJob (string title)

void endPrintJob ()

Operation

This enables you to package up several prints into one job, to avoid having the Print dialog box shown repeatedly.
Example

// Canvas printing demo

int counter =1

DB theBox = centered "Canvas print demo"

DBE tog, canv

void repaint (DBE canv) {
realBackground (canv, realColor_White)
font (canv, 1,1)
draw (canv, 150, 150, "This is page " counter

" n)

DXL Reference Manual

576

void getSettings () {
bool b = get tog
showPrintDialogs b

}

void printOne (DB xx) {
getSettings
counter = 1
print(canv, 1.0, 1.0)
}

void printThree (DB xx) {

getSettings
startPrintJob "Batch print job"
counter = 1
print(canv, 1.0, 1.0)
counter = 2
print(canv, 1.0, 1.0)
counter = 3
print(canv, 1.0, 1.0)
endPrintJob

counter = 1

}
canv = canvas (theBox, 400, 400, repaint)

tog = toggle (theBox, "Show dialogues",
showPrintDialogs())

apply (theBox, "Print one", printOne)
apply (theBox, "Print three", printThree)

show theBox

Complex canvases

This section defines functions for dialog box canvases, which support all the functions of the standard Rational DOORS
windows, such as in-place editing, tool tips, header bars, scroll bars, menu bars, status bars, tool bars, and tool bar combo
boxes. Normally, canvases do not have these dialog box elements, but functions are available to implement them.

In-place editing

There are three types of in-place editors available in each canvas. They are selected through the following constants:

inPlaceString specifies a line editor

inPlaceText specifies a text editor

DXL Reference Manual

577

inPlaceChoice provides a drop-down list of choices

In-place editing is normally disabled on canvases. The hasInPlace function defines an in-place edit callback function,

and enables the editors.

hasInPlace

Declaration
void hasInPlace (DBE da, void cb(DBE el, event))

Operation

The callback function is called on one of two event types. The event type is the second argument passed to callback

function with one of the following values:

inPlaceTextFilled the text box is full and needs to be expanded
inPlaceTextChange the text box contents has been modified
inPlaceMove
Declaration

void inPlaceMove (DBE da, editor, int x, int y, int w, int h)

where:
editor is one of the in-place editors: inPlaceString, inPlaceText, or
inPlaceChoice
Operation

Moves the specified type of editor to the given location within the canvas.

inPlaceShow

Declaration

void inPlaceShow (DBE da, editor, bool showing)
where:

editor is one of the in-place editors: inPlaceString, inPlaceText, or
inPlaceChoice

DXL Reference Manual

578

Operation

Displays or hides the specified type of editor, at the location defined by the inPlaceMove function, depending on the
value of showing.

This function automatically triggers the repaint callback.

inPlaceChoiceAdd

Declaration
void inPlaceChoiceAdd (DBE da, string item)

Operation

Adds an option to the in-place choice editor.

inPlaceCut, inPlaceCopy, inPlacePaste

Declaration
void inPlace{Cut|Copy|Paste} (DBE da, editor)

where:
editor is one of the in-place editors: inPlaceString, inPlaceText, or
inPlaceChoice
Operation

Perform cut, copy, or paste operations on the contents of the in-place text or string editor.

inPlaceGet

Declaration

{string|int} inPlaceGet (DBE da, editor)

where:
editor is one of the in-place editors: inPlaceString, inPlaceText, or
inPlaceChoice
Operation

Returns the in-place editor specified by edi tor. The return value is a string for the text or string editors, and an integer for

the choice editor.

DXL Reference Manual

579

inPlaceSet

Declaration

void inPlaceSet (DBE da, editor, {string s|int i})

where:
editor is one of the in-place editors: inPlaceString, inPlaceText, or
inPlaceChoice
Operation

Sets the text or string editor to have the value s, or sets the choice editor to have the value 1.

inPlaceReset

Declaration
void inPlaceReset (DBE da, editor)

where:
editor is one of the in-place editors: inPlaceString, inPlaceText, or
inPlaceChoice
Operation

Resets the specified editor to have no value.

inPlaceTextHeight

Declaration

int inPlaceTextHeight (DBE da)

Operation

Returns the number of lines of text displayed in the text editing box.

DXL Reference Manual

580

addToolTip

Declaration

void addToolTip (DBE canvas,
int xpos,
int ypos,
int activeWidth,
int activeHeight,
type userData
string toolTipCallback (DBE, type))

Operation

Adds a tool tip to the atea of a canvas defined by xpos, ypos, activeWidthand activeHeight. The upper left
corner of the rectangle is defined by xpos and ypos.

When the canvas is displayed, if the user places the cursor over this rectangle, the callback function is called with canvas
as the first argument and the userData specified in the call to addToolTip as the second argument. The userData
argument can be of any type. The toolTipCallback function returns a string, which is displayed at the cursor’s
position as a tool tip.

You can use userData to customize the tool tip message, so that a single callback function can display different messages
depending on the area from which it was activated.

Example

This example produces a tool tip, which appears as: The cursor is in the [upper|lower]
[left|right] corner.

DB box = create "Tooltip example"

string toolTipCallback (DBE xx, string mystring) {
return "The cursor is in the " mystring "
corner"

}

void repaint (DBE c)
{
clearToolTips c

addToolTip(c, 0, 0, 100, 100, "upper left",
toolTipCallback)

addToolTip(c, 0, 100, 100, 100, "lower left",
toolTipCallback)

addToolTip(c, 100, 0, 100, 100, "upper right",
toolTipCallback)

addToolTip(c, 100, 100, 100, 100, "lower
right", toolTipCallback)
}

DBE canvasWithTips = canvas (box, 200, 200, repaint)

DXL Reference Manual

581

show box

clearToolTips

Declaration

void clearToolTips (DBE canvas)

Operation

Removes all tool tips associated with canvas.

hasHeader

Declaration
void hasHeader (DBE da,
void cb(DBE el, headerEvent, int hIndex, int param))

Operation
This function prepares a canvas for headers. It sets a canvas to have a header bar, and defines a callback. This callback is

called by one of the four possible event types, through one of the following constants:

headerResize a header has been resized; hITndex specifies which heading was
changed, and paramis its new width

headerEdit header hIndex was double-clicked to request an edit operation
headerSelect header hIndex was single-clicked to select
headerReorder header hIndex was dragged into position param
headerAddColumn
Declaration

void headerAddColumn (DBE da, string title, int width)

Operation

Adds a header, with the specified title and width. If there is no header selected, the new column appears at the right of the
header bar; otherwise it appears to the left of the currently selected header.

headerChange

Declaration
void headerChange (DBE da, int index, string title, int width)

DXL Reference Manual

582

Operation
Changes the title and width of the header specified by index.

headerRemoveColumn

Declaration

voilid headerRemoveColumn (DBE da, int index)

Operation

Deletes the header specified by index from the header bar.

headerReset

Declaration

volid headerReset (DBE da)

Operation

Removes all the headers defined for the canvas, typically before adding new ones.

headerSelect

Declaration
void headerSelect (DBE da, int index)

Operation

Sets header index to be selected.

headerSetHighlight

Declaration
void headerSetHighlight (DBE da, int index, int highlight)

Operation
Sets highlight highlight in header index. Valid highlight indices are 0 and 1; 0 is the upper indicator, 1 is the lower

indicator.

DXL Reference Manual

583

headerShow

Declaration

voilid headerShow (DBE da, bool onOff)

Operation

Turns header display on or off in the canvas. Headers must already have been enabled for them to be displayed.

hasScrollbars

Declaration
void hasScrollbars (DBE da,
void cb (DBE canv,
ScrollEvent Event,
ScrollSide scrollBar,
int newPos,

int oldPos))

Operation

This function prepares a canvas for scroll bars. It sets a canvas to have scroll bars, and defines a callback. The callback is
called with one of the seven possible event types defined through the following constants:

scrollToEnd The thumb has been dragged to the bottom or right-hand end of the
bar.

scrollToHome The thumb has been dragged to the top or left-hand end of the bar.

scrollPageUp The user has clicked in the trough above or to the left of the thumb.

scrollPageDown The user has clicked in the trough below or to the right of the thumb.

scrollUp The user has clicked on the left, or up button section of the scroll bar.

scrollDown The user has clicked on the right, or down button section of the scroll
bar.

scrollToPos The user has dragged the scroll bar to a new position using the thumb.

In each case, the arguments passed to the callback function are as follows:
canv The canvas to which the event applies.

event One of the scroll events above.

DXL Reference Manual

584

scrollBar Either vertical or horizontal to indicate the scroll bar to
which the event applies.
new The new thumb position.
old The previous thumb position.
scrollSet
Declaration

void scrollSet (DBE da, scrollBar, int maxPos, int view, int pos)

Operation

This function sets the position and size of the thumb; maxPos is the maximum possible position, view is the size of the
thumb, and pos is the position to which the start of the thumb is to be moved. When the thumb is at maxPos, the end of
the thumb is at maxPos+view, making the length of the scroll bar maxPos+view. The scrollBar argument can be
vertical or horizontal.

Example

In this example, the thumb has a size of 1 and can move between 0 and 3. The total length of the scroll bar is 4.

scrollSet (can, horizontal, 3, 1, 0)

menuBar

Declaration
DBE menuBar (DB box)

Operation

Creates 2 menu bar within a dialog box. The menu bar automatically appears at the top of the window. Returns a DBE,
which must be used for adding menus to the menu bar.

statusBar

Declaration

DBE statusBar (DB box,
string initial,
int sectionEndPoints|[]
[,int noOfSections])

Operation

This function creates a status bar within a dialog box. The status bar automatically appears at the bottom of the window.
The returned DBE must be used for displaying status values.

DXL Reference Manual

Status bars contain a number of text areas, which are specified by their end point in pixels. To create a status bar with

three areas of 100, 120, and 150 pixels, you must specify sectionEndPoints as:

{100, 220, 370}

You can opt to have either a fixed-size array, and omit noOfSections, or a dynamically filled array, in which case specify

the number of sections in noOfSections.

When creating status bars, you should ensure that any dialog box button elements are hidden.

To place a message in the status bar, use the set (status bar message) function.

Menus, status bar and tool bars example

#include <utils/icons.inc>

nt backColor = colorYellow
int sizes[] = {150, 300}
DB menuDemo = create "Menu Demo"

void doClose (DB x) {
hide x
}

close (menuDemo, false, doClose)

BE mb = menuBar (menuDemo)

DBE sb = statusBar (menuDemo, "Initial", sizes)

void repaint (DBE c) {
background(c, backColor)
}

DBE canv = canvas (menuDemo, 300,

string entries[] = {"Size",
">Small",
">Normal",
">Large",
"Style",
">Bold",
">Ttalic"}

char mn[] = {'S'",
'm',
'N',
'L',
't',
'B',
'I'}

repaint)

DXL Reference Manual

585

586

har hot[] = {ddbNone,
ddbNone,
ddbNone,
ddbNone,
ddbNone,
ddbNone,
ddbNone'}

{"Set size",
"Small fonts",
"Normal fonts",
"Large fonts",
"Set style",
"Bold font",

"Italic font"}

string helpl[]

string inactive[]= {"Never",
"Never",
"Never",
"Never",
"Never",
"Never",
"Never"}

Sensitivity sensitive (int index) {
if (index == |'] index == 6)
return ddbChecked
return ddbAvailable
}

void cb(int index) {
ack "Menu " help[index] " activated"

}

addMenu (mb, "Format", 'F', entries, mn, hot,
help, inactive, sensitive, cb)

show menuDemo

DXL Reference Manual

587

This generates the following dialog box:

| DOORS. My Dwnu M=l E
Zrmret
sl e

Toolbars

This section defines functions for using toolbars in dialog boxes, module windows and canvases.

toolBar

Declaration

DBE toolBar (DB Box
[, string name,
Sensitivity mappingCallback()],
ToolType types/[],
int param[],
string toolTip[],
string help/[],
string inactiveHelp/[]
[, int noOfTools],
Sensitivity sensitive (int entrylIndex),
void callback (int entryIndex)
[, bool newRow,
bool showName])

Operation

Creates a tool bar within a dialog box. Tool bars can be displayed anywhere in a dialog box and can be placed either with
constraints or with the normal automatic placement. Normally tool bars appear between a menu bar and a canvas, which is

usually followed by a status bar.

DXL Reference Manual

588

Tool bar contents are specified as arrays all containing the same number of elements. To use fixed-size arrays all containing
the same number of elements, omit noOfTools. To use freely-defined arrays, specify the minimum number of elements
in noOfTools.

The arguments passed to the function are defined as follows:

types the type of the tool, which can have one of the following values:
toolButton A regular click-to-activate icon.
toolToggle A toggle in/out icon.
toolRadio A mutually exclusive toggle icon.
toolCombo A drop-down list of strings.
toolSpacer A larger gap.

toolEditableCombo A drop down list of strings plus an area in which to
enter new strings.

param Fora toolButton or toolToggle, this is the id of the icon; the include file
utils/icons. inc defines all the icons available as constants; for a
toolCombo, it specifies the width of the drop-down list in pixels; there is no value
for toolSpacer.

toolTip String that is displayed in the tool tip for this tool.

help String that is displayed in the status bar of the window, if one exists, as the user
passes the mouse over an active tool.

inactive String thatis displayed in the status bar of the dialog box, if one exists, as the user
Help passes the mouse over an inactive tool.

Two callback functions are required: one to determine whether tools are sensitive, and one that is called when a tool is
activated. sensitive (int entryIndex) is called for each entry when the toolbar is first displayed or when the
updateToolBars function is called.

The function must return one of the following values:

ddbUnavailable The tool\toolbar is unavailable.

ddbAvailable The tool\toolbar is active.

ddbChecked The tool\toolbar is active and has a check beside it.
ddbInvisible The tool\toolbar is not shown

When the user selects an entry, callback (int entryIndex) is called with the index of the tool, and your program
must perform the appropriate operation. For both sensitive and callback functions, entryIndex starts at 0, and
counts up, so there is a direct correspondence between the array elements and the index returned by the menu.

Name and callback function parameters are optional, as well as booleans determining whether the toolbar is allocated a new
row in the container, and whether the name is shown.

DXL Reference Manual

589

If the name parameter is specified, the toolbar will be hosted within a container control at the top of the dialog, if not, the
toolbar will be generated on the canvas. If name is specified then newRow and showName are mandatory.

The callback function determines how the toolbar option will appear in the context menu for the container control. The
possible return values are the same Sensitivity values listed in the table above.

Their is also another ToolType available: ToolEditableCombo. It behaves the same as ToolCombo, except the text
in the editable area of the combo box is editable, for example a drop-down list of strings plus an area to enter new strings

into.

updateToolBars

Declaration

void updateToolBars (DB box)

Operation

Refreshes the state of the tools in all tool bars in dialog box box.

toolBarComboGetSelection

Declaration
{string|int} toolBarComboGetSelection (DBE tb, int index)

Operation

Returns the string value of the currently selected option or the index of the currently selected option. The i ndex argument
specifies which tool is to be processed, counting from 0. All tools are included in the count.

toolBarComboGetltem

Declaration
string toolBarComboGetItem (DBE tb, int cIndex, int iIndex)

Operation

Returns the string value of option i Index in the tool bar combo box specified by cIndex. The i Index argument
specifies which tool is to be processed, counting from 0. All tools are included in the count.

toolBarComboSelect

Declaration

void toolBarComboSelect (DBE tb, int index, {string item|int position})

DXL Reference Manual

590

Operation
Selects the option with value i tem (or in indexed position)in the tool bar combo box. The index argument specifies

which tool is to be processed, counting from 0.

toolBarComboCount

Declaration
int toolBarComboCount (DBE tb, int index)

Operation
Returns the number of options in the tool bar combo box. The index argument specifies which tool is to be processed,

counting from 0.

toolBarComboEmpty

Declaration
void toolBarComboEmpty (DBE tb, int index)

Operation
Deletes all the options in the tool bar combo box. The index argument specifies which tool is to be processed, counting

from 0.

toolBarComboAdd

Declaration
void toolBarComboAdd (DBE tb, int index, string item)

Operation
Adds an option with value i tem at the end of the tool bar combo box. The index argument specifies which tool is to be

processed, counting from 0.

toolBarCombolnsert

Declaration

void toolBarComboInsert (DB tb, int index, int position, string item)

Operation

Adds an option with value i tem at the specified position of the tool bar combo box list. If the position parameter
is -1, the item is added to the end of the list. The index argument specifies which tool is to be processed, counting from 0.

DXL Reference Manual

591

toolBarComboDelete

Declaration

void toolBarComboDelete (DB tb, int index, int position)

Operation

Used to delete a record within a drop down combo. Takes the position in the list of the item to be deleted. The first
item has an index of 0. The index argument specifies which tool is to be processed, counting from 0.

toolBarVisible

Declaration
bool toolBarVisible ({Module mod|DBE toolbar|DB box, string name})

Operation

Used to retrieve the visibility state of a toolbar. Only applies to toolbars that are hosted within the appropriate container
control (those that were created with the name parameter specified).

toolBarMove

Declaration
void toolBarMove ({Module mod|DBE toolbar|DB box, string name},
int iposition,
bool newRow)
Operation

Used to change the position of a toolbar. The toolbar is identified differently depending on which parameters are supplied.
This method applies only to toolbars that are hosted within the appropriate container control (those that were created with

the name parameter specified).

The newRow parameter defines whether the toolbar is shown on a new row within the ReBar control or not.

toolBarShow

Declaration
void toolBarShow ({Module mod|DBE toolbar|DB box, string name}, bool bShow)

Operation

Used to change the visibility of a toolbar, as identified by the supplied parameters. Applies only to toolbars that are hosted
within the appropriate container control, (those that were created with the name parameter specified).

DXL Reference Manual

592

createEditableCombo

Declaration
void createEditableCombo ({linksetCombo|viewCombo |helpCombo)

Operation

Creates an editable combo box in a tool bar in a module or user-created dialog box

toolBarComboGetEditBoxSelection

Declaration

string toolBarComboGetEditBoxSelection (DBE toolbar, int index)

Operation

Returns the selected text from the editable combo box in toolbar where index is the combo box index.

toolBarComboCutCopySelectedText

Declaration
void toolBarComboCutCopySelectedText (DBE toolbar, int index, bool cut)

Operation

Cuts, or copies, the selected text in the editable combo box in toolbar atlocation index. If cutis true, the selected
text is cut to the clipboard. Otherwise, it is copied.

toolBarComboPasteText

Declaration

void toolBarComboPasteText (DBE toolbar, int index)

Operation

Pastes text from the clipboard into the combo box located at index in toolbar. Replaces selected text if there is any.

Colors

This section defines constants and a function that allow you to use color in dialog boxes within Rational DOORS. Colors
can be used with attribute types and with canvas dialog box elements.

DXL Reference Manual

593

Logical colors

Logical colors are defined on the options menu.

Declaration

const int color

where color can be one of the following:
logicalCurrentObjectOutline
logicalGridLines
logicalDefaultColor
logicalPageBackgroundColor
logicalTextBackgroundColor
logicalCurrentBackgroundColor
logicalCurrentCellBackgroundColor
logicalTitleBackgroundColor
logicalReadOnlyTextBackgroundColor
logicalUnlockedTextBackgroundColor
logicalDataTextColor
logicalTitleTextColor
logicalSelectedTextColor
logicalReadOnlyTextColor
logicalDeletedTextColor
logicalHighIndicatorColor
logicalMediumIndicatorColor
logicallowIndicatorColor
logicalGraphicsBackgroundColor
logicalGraphicsShadeColor
logicalGraphicsElideBoxColor
logicalGraphicsTextColor
logicalGraphicsBoxColor
logicalGraphicsLinkColor
logicalGraphicsCurrentColor
logicalGraphicsSelectedColor

logicalGraphicsBoxEdgeColor

DXL Reference Manual

594

logicalLinkPageBackgroundColor
logicalLinkTextBackgroundColor
logicalLinkCurrentBackgroundColor
logicalLinkTitleBackgroundColor
logicallLinkDataTextColor
logicalUserlColor
logicalUser2Color
logicalUser3Color
logicalUser4Color
logicalUser5Color
logicalPageBackgroundFilterColor
logicalPageBackgroundSortColor
logicalPageBackgroundFilterSortColor
logicalTitleBackgroundColor
logicalInPlaceTextColor
logicalInPlaceBackgroundColor
logicalPartitionOutTextColor
logicalPartitionInReadTextColor
logicalPartitionInWriteTextColor
logicalHighlightURLColor
logicalLinksOutIndicatorColor
logicalLinksInIndicatorColor
logicalOIndicatorColor
logicalllIndicatorColor
logical22IndicatorColor
logical33IndicatorColor
logical44IndicatorColor
logical55IndicatorColor
logicalé66IndicatorColor
logical77IndicatorColor
logical88IndicatorColor
logicallOO0IndicatorColor
logicalPrintPreviewBackgroundColor

logicalPrintPreviewPageColor

DXL Reference Manual

595

logicalPrintPreviewTextColor

logicalPrintPreviewShadeColor

Actual colors

Actual colors are dependent on the default Rational DOORS setup. These might not make sense if you change your color
options.

Declaration

const int color
where color can be one of:
colorLightBlue
colorMediumLightBlue
colorDarkTurquoise
colorPink

colorBlue
colorMaroon
colorRed
colorYellow
colorGreen
colorMagenta
colorCyan
colorWhite
colorOrange
colorBrown
colorBlack
colorGrey82
colorGrey77
colorRedGrey

colorGrey

Real colors

Real colors are the colors you assign to logical colors.

Declaration

const int color

DXL Reference Manual

596

where color can be one of:

int realColor Light Blue2
int realColor Light Blue
int realColor Dark Turquoise
int realColor Pink

int realColor Blue

int realColor Maroon

int realColor Red

int realColor Yellow

int realColor Green

int realColor Cyan

int realColor Magenta
int realColor White

int realColor Orange

int realColor Brown

int realColor Purple

int realColor Navy

int realColor Sea Green
int realColor Lime Green
int realColor Rosy Brown
int realColor Peru

int realColor Red Grey
int realColor Firebrick
int realColor Thistle
int realColor Grey82

int realColor Grey77

int realColor Grey66

int realColor Greyb55

int realColor Grey44

int realColor Grey33

int realColor Grey22

int realColor Greyll

int realColor Black

int realColor NewGreyl

DXL Reference Manual

597

int realColor NewGrey2
int realColor NewGrey3
int realColor NewGrey4

Real colors are applied using the realBackground and realColor functions.

getLogicalColorName

Declaration

string getlLogicalColo[u]rName (int logicalColor)

Operation

Returns the name of 1ogicalColor, which can be any of the values defined in “Logical colors,” on page 593.

getRealColor

Declaration
int getRealColo[ulr(int logicalColor)
Operation

Returns the actual color value assigned to 1ogicalColor, which can be any of the values defined in “Real colors,” on

page 595.

getRealColorlcon

Declaration

Icon getRealColo[ulrIcon(int realColorIndex)

Operation

Returns the icon of realColorIndex, which can be any of the values defined in “Real colors,” on page 595. The icon
is for use in a list view or tree view that is all the specified color.

getRealColorName

Declaration

string getRealColo[u]rName (int realColor)

Operation

Returns the name of realColor, which can be any of the values defined in “Real colors,” on page 595.

DXL Reference Manual

598

setRealColor

Declaration

string setRealColo[ulr(int logicalColor,
int realColor)

Operation

Sets 1ogicalColor (which can have any of the values defined in “Logical colors,” on page 593) to realColor (which
can be any of the values defined in “Real colors,” on page 595).

Example

This example sets the logical data text color to green:

setRealColor (logicalDataTextColor,
realColor Green)

Simple placement

This section defines the simple, more or less automatic placement mechanism. This enables you to specify where to place
the next element, relative to the previous one. A fully constrainable mechanism is described in “Constrained placement,” on
page 601.

beside

Declaration
void beside (DB box)

Operation

Places the next element to the right of the last one.

below(element)

Declaration
void below (DB box)

Operation

Places the next element below the last one, and aligned with it.

DXL Reference Manual

599

left

Declaration
void left (DB box)

void flushLeft (DB box)

Operation
Places the next element below the last one, at the left of the dialog box.

The flushLeft function is only provided for v2.1 compatibility.

leftAligned

Declaration
void leftAligned (DB box)

Operation

Places the next element in the column at the left-hand side of the dialog box. This is the default placement option: if there
are no other alignment options specified items are aligned in a single column.

right

Declaration
void right (DB box)
void flushRight (DB box)

Operation
Places the next element below the last one, at the right of the dialog box.

The flushRight function is only provided for v2.1 compatibility.

opposite

Declaration

void opposite (DB box)

Operation

Places the next element on the same row as the last one, but aligned with the right of the dialog box. After creating the next
element another placement mode must be set.

DXL Reference Manual

600

full

Declaration
void full (DB box)

Operation

Specifies that subsequent elements are created at full window width. Labels are aligned on the left; the data area is stretched
to be aligned to the right edge of the window. When the dialog box is resized, the element resizes with it. This is most useful
with field elements.

stacked

Declaration

void stacked (DBE element)

Operation

Stacks this dialog-box element on top of the preceding one. This is most useful when building an attribute value editor
dialog box. Obviously it does not make sense to leave several stacked elements visible, so this is normally used in
conjunction with hide.

Example

string enums|[] = {"one", "two", "three"}

DB dbBox = "Stacked Example"

DBE stringEdit = field(dbBox, "String:", null,
20, false)

DBE enumkEdit = choice (dbBox, "Enum:", enums, 3,

0)
stacked enumEdit
hide enumEdit
DBE intEdit = slider (dbBox, "Int:", 0, 100, 0)
stacked intEdit
hide intEdit

show (dbBox)

DXL Reference Manual

Constrained placement

This section defines the constrained placement functions, which expose the full power of the Rational DOORS dialog
placement mechanism. As with all power, responsibility is required. You can easily create broken dialog boxes with this
mechanism. It is intended for experienced users only, especially those who are sufficiently familiar with simple placement to
have reached its limitations.

Constrained placement basics

Here is a standard dialog box, or form:

W our elethents hete

Close

Dialog box elements are attached to each other and to the dialog box on all edges:

Left Right
attachum ent % ¥ our conterts here * attachment

Top attachment

!

v

Bottom attacht ert

Attachments can be any of the following:

spaced
flush
unattached
aligned

inside (normally used within frames or tab strips)

DXL Reference Manual

601

602

When you place your first element in the dialog box, it has its attachment points connected up for you as follows:

Spaced

!

Spaced g First eletm ent %< U nattached

%

Unattached

When you add your next DBE, it is hooked up as follows:

Flush «—| Firstelemert |—¢ Unattached

!

Aligned Spaced

Second elem ent %< Unattached

Ttattached

DXL Reference Manual

And so on, until the last one is hooked up to the separator as follows:

¥

Aligned

Second elem ent

¢ Utattached

f

Spaced

Last element

¢ Utattached

Spaced

v

Close

Some elements, such as lists, texts, and canvases, come joined onto the form on both vertical edges:

m—Flush ——

Text element Flush Ey

All the other options are implemented in the same style. In implementing a constraint based dialog box layout, it is advisable

to draw all the items and their relationships on a piece of paper before encoding them.

Attachment placement

The —> operator is used in constrained placement, as shown in the following syntax:

DBE elem -> string side -> string attachment [-> DBE other]

where:

elem

Is a dialog box element of type DBE .

DXL Reference Manual

603

604

side Is the side the attachmentis on: 1eft, right, top or bot tom (these are
not case sensitive).

attachment Is the type of attachment: £1ush, spaced, aligned, unattached,
inside or form (these are not case sensitive).

other Is the dialog box element of type DBE that is the one relative to which
placement is to be performed.

The three operators together make a complete specification for the attachment.

Note: You must place dialog box elements in the order they are defined. In the following examples, mylist must be
declared before otherList, and theFrame must be declared before theTab for the placement to work.

Example

mylist->"left"->"unattached"
mylist->"right"->"form"
mylist->"left"->"flush" // not complete
mylist->"left"->"flush"->otherList
theFrame->"left"->"inside"->theTab
theFrame->"right"->"inside"->theTab
theFrame->"top"->"inside"->theTab

theFrame->"bottom"->"inside"->theTab

DXL Reference Manual

605

Worked example

This is a worked example of placing three lists side by side in a dialog box. The first step is to work out the attachments:

!

Flush bligned Lhgned

| v

%= Flush — List1 *—Flush — List2 = Flush — List3 — Flush —
Unattached Unattached Flush

Close

Initially, declare the dialog box and lists:
DB threelistBox = create "The Three Lists play Carnegie Hall"

DBE listl = list (threelListBox, "One", 100, 10, listOneData)

DBE list2 = list(threeListBox, "Two", 100, 10, listTwoData)

DBE 1list3 = list(threeListBox, "Three", 100, 10, listThreeData)

Now connect each one up, remembering to disconnect attachments where they would be problematic. This
disconnects the first list from the right-hand edge of the form:

listl->"right"->"unattached"

This connects the left edge of List 2 to the right hand edge of List 1, then aligns the top of List 2 with the top of List 1, and
then disconnects the right-hand edge of List 2 from the form:

list2->"left"->"flush"->1listl
list2->"top"->"aligned"->1istl
list2->"right"->"unattached"

'This does much the same, but note that List 3 remains connected to the form:
list3->"left"->"flush"->1ist2
list3->"top"->"aligned"->1istl

Instead of aligning the tops of the lists you could connect them all to the form:

listl->"top"->"form"

DXL Reference Manual

606

list2->"top"->"form"
list3->"top"->"form"

but that only works in this case. If List 1 is preceded by another element, for example a field, and you still want the three
parallel lists, you need to use alignment.

Constrained placement full example program

// parallel list DB example

/*
example of DXL dialog boxes which
builds parallel lists.

*/

DB plistBox = create "Parallel lists"

string listOne[] = {"One", "Two", "Three"}
string listTwo[] = {"Un", "Deux", "Trois"}
string listThree[] = {"Uno", "Dos", "Tres"}

DBE 11 = list(plistBox, "English", 80, 5,
1listOne)

DBE 12 = list(plistBox, "French", 80, 5,
listTwo)

DBE 13 = list(plistBox, "Spanish", 80, 5,
listThree)

DBE tl = text(plistBox, null, null, 80, 50,
false)

DBE t2 = text(plistBox, null, null, 80, 50,
false)

DBE t3

text (plistBox, null, null, 80, 50,
false)

11->"right"->"unattached"
12->"left"->"spaced"->11
12->"top"->"aligned"->11
12->"right"->"unattached"
13->"left"->"spaced"->12
13->"top"->"aligned"->11
13->"right"->"form"
tl->"top"->"spaced"->11
tl->"right"->"unattached"

t2->"left"->"spaced"->tl

DXL Reference Manual

607

t2->"top"->"spaced"->12
t2->"right"->"unattached"
t3->"left"->"spaced"->t2
t3->"top"->"spaced"->13
t3->"right"->"form"

void listSel (DBE 1) {
string w = get 1

DBE t

if (!null w) {
if (1 == 11) t = t1
if (1 == 12) t = t2
if (1 == 13) t = t3
set (t, w)

}
set (11, listSel)

set (12, listSel)
set (13, listSel)

show plistBox

Progress bar

This section defines functions for the progress bar, which is not a dialog box element as such, but a secondary window that
is displayed over the parent window. It contains a title, a message, a progress bar and a Cancel button.

progressStart

Declaration

void progressStart (DB box,
string title,
string message,
int 1imit)
Operation

Displays the progress bar and window. The 1imit argument specifies the maximum value that is passed to
progressStep.

DXL Reference Manual

608

progressStartDisableCancel

Declaration

void progressStartDisableCancel (DB box,
string title,
string message,
int limit)

Operation

The same as the progressStart but does not show the Cancel button.

progressStep

Declaration
void progressStep (int position)

Operation

Moves the progress bar to the given position, which must be between 0 and 1imit defined in the preceding call to
progressStart. Progress can be forward, backward, or cyclic.

progressMessage

Declaration

void progressMessage (string message)

Operation

Sets the message field in the progress window.

progressRange

Declaration

void progressRange (string message,
int position,
int I1imit)

Operation

Specifies new message, position and limit values for the progress bar.

DXL Reference Manual

progressCancelled

Declaration

bool progressCancelled()

Operation

Returns true if the Cancel button has been clicked in the progress bar window; otherwise, returns false. This can be

used to terminate a long-running operation.

progressStop

Declaration

void progressStop ()

Operation

Removes the progress bar window from the screen.

Progress bar example

void progCB (DB x) {
Object o
int nos = 0
for o in current Module do nos++

progressStart (x, "Experiment", "Something",
nos)

nos = 0

for o in current Module do {
string h = o0."Object Heading"
progressStep ++nos
if (null h) h = "null heading"
progressMessage h

if (progressCancelled) {

if (confirm("Exit loop?")) {
progressStop
halt
}
}
}
progressStop

DXL Reference Manual

609

610

if (null current Module) {
ack "Please run from a module"
halt

}

DB progressDB = create "Progress test"

label (progressDB, "Demonstration of the progress
bar")

apply (progressDB, progCB)

show progressDB

DBE resizing

setExtraWidthShare(DBE)

Declaration

string setExtraWidthShare (DBE control, real share)

Operation
Sets the share of any extra width that will go to the DBE when the DB is resized.

share should be between 0 and 1.0.

setExtraHeightShare(DBE)

Declaration

string setExtraHeightShare (DBE control, real share)

Operation
Sets the share of any extra height that will go to the DBE control when the DB is resized.

share should be between 0 and 1.0.

Example
DB test = create("Field Test")
DBE rich = richText (test, "Rich Text", "This one should expand", 200, 50, false)

DBE readOnlyRich = richText (test, "Rich Text", "This one should expand", 200,
150, true)

DBE rtfField = richField(test, "Rich Field", "This one should be fixed height",
31, false)

DXL Reference Manual

611

DBE lab = label (test, "A label")
realize (test)

setExtraHeightShare (rich, 0.25)
setExtraHeightShare (readOnlyRich, 0.75)

show test

HTML Control

The section describes the DXL support for the HTML control.

Note: Some of the functions listed below take an ID string parameter to identify either a frame or an HTML element. In
each of these methods, frames or elements nested within other frames are identified by concatenating the frame
IDs and element IDs as follows: <top frame ID>/[<sub frame ID>/...]<element ID>.

In methods requiring a frame ID, passing null into this parameter denotes the top level document.

These methods refer to all frame types including IFRAME and FRAME eclements.

htmlView

Declaration

DBE htmlView (DB parentDB, int width, int height, string URL, bool

before navigate cb(DBE element, string URL, string frame, string postData), void
document complete cb(DBE element, string URL), bool navigate error cb (DBE
element, string URL, string frame, int statusCode), void progress cb (DBE
element, int percentage))

Operation

Creates an HTML view control where the arguments are defined as follows:

arentDB The dialog box containing the control.

p g g

width The initial width of the control.

height The initial height of the control.

URL The address that will be initially loaded into the control. Can be null to load a blank

page (about:blank).

DXL Reference Manual

612

parentDB The dialog box containing the control.

before navigate cb Fires for each document/frame before the HTML window/frame navigates to a
specified URL. It could be used, amongst other things, to intercept and process the
URL prior to navigation, taking some action and possibly also navigating to a new
URL.

The return value determines whether to cancel the navigation. Returning false
cancels the navigation.

Its arguments are defined as follows:

* element: The HTML control itself

e URL: The address about to be navigated to.

* frame: The frame for which the navigation is about to take place.

* postData: The data about to be sent to the server if the HTTP POST
transaction is being used.

document complete cb Fires for each document/frame once they are completely loaded and initialized. It
could be used to start functionality required after all the data has been received and is
about to be rendered, for example, parsing the HTML document.

Its arguments are defined as follows:

¢ element: The HTML control itself
¢ URL: The loaded address.

navigate error cb Fires when an error occurs during navigation. Could be used, for example, to display
a default document when internet connectivity is not available.

The return value determines whether to cancel the navigation. Returning false
cancels the navigation.

Its arguments are defined as follows:

e elements: The HTML control itself.
* URL: The address for which navigation failed.
* frame: The frame for which the navigation failed.

* statusCode: Standard HTML error code.

progress_cb Used to notify about the navigation progress, which is supplied as a percentage.

set(html callback)

Declaration

void set (DBE HTMLView, bool event cb(DBE element, string ID, string tag, string
event type))

DXL Reference Manual

613

Operation

Attaches a callback to HTML control element that receives general HTML events. The ID argument identifies the
clement that sourced the event, the tag argument identifies the type of element that sourced the event, and the
event type argument identifies the event type. Note that the only event types currently supported are c1ick and
dblclick.

If this function is used with an incorrect DBE type, a DXL run-time error occurs.

set(html URL)

Declaration
void set (DBE HTMLView, string URL)

Operation
Navigates the given HTMLView to the given URL.

Can only be used to navigate the top level document and cannot be used to navigate nested frame elements.

setURL

Declaration
void setURL(DBE HTMLView, string ID, string URL)

Operation
Navigates the frame identified by ID to the given URL. The ID might be null.

getURL

Declaration
string getURL (DBE HTMLView, string ID)

Operation
Returns the URL for the currently displayed frame as identified by its ID. The ID might be null.

get(HTML view)

Declaration
string get (DBE HTMLView)

Operation
Returns the URL currently displayed in the given HTMLV1 ew, if there is one.

DXL Reference Manual

614 ‘

get(HTML frame)

Declaration

Buffer get (DBE HTMLView, string ID)

Operation
Returns the URL for the currently displayed frame as identified by its ID.

set(HTML view)

Declaration
string set (DBE HTMLView, Buffer HTML)

Operation

Sets the HTML fragment to be rendered inside the <body> tags by the HTML view control directly. This enables the
controls HTML to be constructed dynamically and directly rendered.

setHTML

Declaration
string setHTML (DBE HTMLView, string ID, Buffer HTML)

Operation
Sets the HTML fragment to be rendered inside the <body> tags by the HTML view controls frame as identified by ID.
This enables the HTML of the given document or frame to be constructed dynamically and directly rendered.

Note: The contents of the frame being modified must be in the same domain as the parent HTML document to be
modifiable. A DXL error will be given on failure (for example, if the wrong type of DBE is supplied).

getHTML

Declaration
Buffer getHTML (DBE HTMLView, string ID)

Operation

Returns the currently rendered HTML fragment inside the <body> tags of the document or frame as identified by its ID.

DXL Reference Manual

615

getBuffer

Declaration
Buffer getBuffer (DBE HTMLView)

Operation
Returns the currently rendered HTML.

getlnnerText

Declaration
string getInnerText (DBE HTMLView, string ID)

Operation

Returns the text between the start and end tags of the first object with the specified ID.

setlnnerText

Declaration
void setInnerText (DBE HTMLView, string ID, string text)

Operation

Sets the text between the start and end tags of the first object with the specified ID.

getinnerHTML

Declaration
string getInnerHTML (DBE HTMLView, string ID)

Operation
Returns the HTML between the start and end tags of the first object with the specified ID.

setlnnerHTML

Declaration
void setInnerHTML (DBE HTMLView, string ID, string html)

Operation
Sets the HTML between the start and end tags of the first object with the specified ID.

DXL Reference Manual

616

Note: The innerHTML property is read-only on the col, colGroup, framSet, html, head, style, table,
tBody, tFoot, tHead, title, and tr objects.

getAttribute

Declaration
string getAttribute (DBE element, string ID, string attribute)

Operation

Retrieves the value for the requested attribute of the first object with the specified value of the ID attribute. If the attribute
does not exist, null is returned.

Returns null on success. Returns error string on failure, for example if the wrong type of DBE is passed in.

setAttribute

Declaration
void setAttribute (DBE element, string ID, string attribute)

Operation

Sets the value of the requested attribute for the first object with the specified value of the ID attribute. If the attribute does
not exist, it is added to the object.

Displays a DXL error on failure, for example if the wrong type of DBE is passed in.

Example

DB dlg

DBE htmlCtrl
DBE htmlBtn
DBE html

void onTabSelect (DBE whichTab) {

int selection = get whichTab

void onSetHTML (DBE button) {
Buffer b = create

string s = get (htmlCtrl)

print s

DXL Reference Manual

617

b =s
set (html, b)

delete b

void onGetInnerText (DBE button) {

string s = getInnerText (html, "Text")

confirm(s)

void onGetInnerHTML (DBE button) {
string s = getInnerHTML (html, "Text")

confirm(s)

void onGetAttribute (DBE button) {

string s = getAttribute (html, "Text", "Align")

confirm(s)

volid onSetInnerText (DBE button) {

Buffer b = create

string s = get (htmlCtrl)

setInnerText (html, "Text",

s)
}
void onSetInnerHTML (DBE button) {
Buffer b = create
string s = get (htmlCtrl)
setInnerHTML (html, "Text", s)

voild onSetAttribute (DBE button) {

Buffer b = create

DXL Reference Manual

618

string s = getAttribute (html, "Text", "Align")
if (s == "left"){
s = "center"
}
else 1f (s == "center") {
s = "right"
}
else if (s == "right") {

s = "left"

setAttribute (html, "Text", "align", s)

bool onHTMLBeforeNavigate (DBE dbe, string URL, string frame, string body) {

string buttons[] = {"OK"}
string message = "Before navigate - URL: " URL "\r\nFrame: " frame
"\r\nPostData: " body "\r\n"

print message ""

return true

void onHTMLDocComplete (DBE dbe, string URL) {
string buttons[] = {"OK"}
string message = "Document complete - URL: " URL "\r\n"
print message ""
string s = get (dbe)

print "url: " s "\r\n"

bool onHTMLError (DBE dbe, string URL, string frame, int error) {
string buttons[] = {"OK"}

string message = "Navigate error - URL: " URL "; Frame: " frame "; Error: "
error "\r\n"

print message ""

DXL Reference Manual

return true

void onHTMLProgress (DBE dbe, int percentage) {
string buttons[] = {"OK"}
string message = "Percentage complete: " percentage "%\r\n"
print message

return true

dlg = create("Test", styleCentered | styleThemed | styleAutoparent)

htmlCtrl = text(dlg, "Field:", "<html><body>\r\n<p id=\"Text\"
align=\"center\">Welcome to DOORS <i>ERS</i></p>\r\n</body></html>",
200, false)

htmlBtn = button(dlg, "Set HTML...", onSetHTML)

DBE getInnerTextBtn = button(dlg, "Get Inner Text...", onGetInnerText)
DBE getInnerHTMLBtn = button(dlg, "Get Inner HTML...", onGetInnerHTML)
DBE getAttributeBtn = button(dlg, "Get Attribute...", onGetAttribute)
DBE setInnerTextBtn = button(dlg, "Set Inner Text...", onSetInnerText)
DBE setInnerHTMLBtn = button(dlg, "Set Inner HTML...", onSetInnerHTML)
DBE setAttributeBtn = button(dlg, "Set Attribute...", onSetAttribute)
DBE frameCtrl = frame(dlg, "A Frame", 800, 500)

string strTabLabels[] = {"One","Two"}

DBE tab = tab(dlg, strTablLabels, 800, 500, onTabSelect)

htmlCtrl->"top"->"form"
htmlCtrl->"left"->"form"
htmlCtrl->"right"->"unattached"

htmlCtrl->"bottom"->"unattached"

htmlBtn->"top"->"spaced"->htmlCtrl
htmlBtn->"left"->"form"

htmlBtn->"right"->"unattached"

DXL Reference Manual

619

620

htmlBtn->"bottom"->"unattached"

getInnerTextBtn->"top"->"spaced"->htmlCtrl
getInnerTextBtn->"left"->"spaced"->htmlBtn
getInnerTextBtn->"right"->"unattached"

getInnerTextBtn->"bottom"->"unattached"

getInnerHTMLBtn->"top"->"spaced"->htmlCtrl
getInnerHTMLBtn->"left"->"spaced"->getInnerTextBtn
getInnerHTMLBtn->"right"->"unattached"

getInnerHTMLBtn->"bottom"->"unattached"

getAttributeBtn->"top"->"spaced"->htmlCtrl
getAttributeBtn->"left"->"spaced"->getInnerHTMLBtn
getAttributeBtn->"right"->"unattached"

getAttributeBtn->"bottom"->"unattached"

setInnerTextBtn->"top"->"spaced"->htmlBtn
setInnerTextBtn->"left"->"aligned"->getInnerTextBtn
setInnerTextBtn->"right"->"unattached"

setInnerTextBtn->"bottom"->"unattached"

setInnerHTMLBtn->"top"->"spaced"->htmlBtn
setInnerHTMLBtn->"left"->"spaced"->setInnerTextBtn
setInnerHTMLBtn->"right"->"unattached"

setInnerHTMLBtn->"bottom"->"unattached"

setAttributeBtn->"top"->"spaced"->htmlBtn
setAttributeBtn->"left"->"spaced"->setInnerHTMLBtn
setAttributeBtn->"right"->"unattached"

setAttributeBtn->"bottom"->"unattached"

frameCtrl->"top"->"spaced"->setInnerTextBtn

frameCtrl->"left"->"form"

DXL Reference Manual

621

frameCtrl->"right"->"form"

frameCtrl->"bottom"->"form"

tab->"top"->"inside"->frameCtrl
tab->"left"->"inside"->frameCtrl
tab->"right"->"inside"->frameCtrl

tab->"bottom"->"inside"->frameCtrl

html = htmlView(dlg, 800, 500, "http://news.bbc.co.uk", onHTMLBeforeNavigate,
onHTMLDocComplete, onHTMLError, onHTMLProgress)

html->"top"->"inside"->tab
html->"left"->"inside"->tab
html->"right"->"inside"->tab

html->"bottom"->"inside"->tab

realize (dlgqg)
show (dlg)

HTML Edit Control

The section describes the DXL support for the HTML edit control.

The control behaves in many ways like a rich text area for entering formatted text. It encapsulates its own formatting
toolbar enabling the user to apply styles and other formatting.

htmIEdit

Declaration
DBE htmlEdit (DB parentDB, string label, int width, int height)

Operation

Creates an HTML editor control inside parentDB.

DXL Reference Manual

622

htm|Buffer

Declaration

Buffer getBuffer (DBE editControl)

Operation

Returns the currently rendered HTML fragment shown in the control. The fragment includes everything inside the <body>
clement tag.

set(HTML edit)

Declaration
void set (DBE editControl, Buffer HTML)

Operation

Sets the HTML to be rendered by the edit control. The HTML fragment should include everything inside, but not
including, the <body> element tag.

Example

DB MyDB = create "hello"

DBE MyHtml = htmlEdit (MyDB, "HTML Editor", 400, 100)

void mycb (DB dlg) {

Buffer b = getBuffer MyHtml

string s = stringOf b

ack s

apply (MyDB, "GetHTML", mycb)
set (MyHtml, "Initial Text")

show MyDB

DXL Reference Manual

Chapter 24
Templates

This chapter describes template functions and expressions:
* Template functions

* Template expressions

Template functions

This section defines functions that allow you to construct a simple, formal module template: essentially a table of contents.
The functions use the Template data type. The templates section of the DXL Library contains many examples.

Note: If you are creating new DXL files that are to be included in the templates list available in the Rational DOORS
client, and the template name, which appears at the top of the DXL file, uses unicode multibyte characters, you
must save the DXL file as UTF-8 encoding.

template

Declaration
Template template (string h)

Operation

Returns a template that builds a single object with string h as its heading.

Example

Template t = template "trivial"

instance

Declaration
void instance (Template t)
void instance (below (Template t))

Operation

The first form creates an instance of template t immediately after the current object and at the same level, or at the first
object position in an empty module.

The second form creates an instance of the template below the current object.

DXL Reference Manual

623

624

Example

// same level

Template t = template "trivial"
instance t

// below

Template t = template "trivial"

instance below t

Template expressions

This section defines the operators used to assemble templates in expressions.

Operators

Template expression operators can be used as shown in the following syntax:
Template t <> string h
Template t << string h
Template t >> string h

Each operator adds an object with heading h at a specific level of template t, and returns the new template. The levels are:

<> current level
<< next level down
>> next level up

The following syntax can be used to specify a number of levels up:
Template t >> int n <> string h

In this form, the second operator can be replaced by << or >>.

Example

This example adds an object at the same level, then another at the level below:
Template t = template "A" <> "B" << "B.A"

instance t

This example adds an object at the same level, then a series of objects each one level lower. B.A.A.A.A is four levels below
A and B; the instance of the new template needs to be at the same level as B, so C is added four levels above B.A.A.A A:

DXL Reference Manual

625

Template t = template "A" <>
"B" <<
"B.A" <<
"B.A.A" <L
"B.A.A.A" <KL
"B.A.A.A.A" >> 4 <>

"C"

instance t

This example is equivalent to:

Template t = template "A" <>
"B" <<
"B.A" <<
"B.A.A" <L
"B.A.A.A" <K<

"B.A.A.A.A" >> 3 >>
new

instance t

DXL Reference Manual

626

DXL Reference Manual

627
Chapter 25

Rational DOORS window control

This chapter describes the DXL library and Addins menus. It also defines functions and standard items that control the way
Rational DOORS displays information and its windows.

* The DXL Library and Addins menus
* Module status bars
¢ Rational DOORS built-in windows

¢ Module menus

The DXL Library and Addins menus

DXL libraties ate directories stored in the Rational DOORS file tree. They can be found at $SDOORSHOME/1ib/dx1.
Each library must contain a description file for that library with the same name as the directory but with a . h1p extension.
Only files ending in . dx1 are recognized as library elements.

The standard directory adds functions to the Rational DOORS formal module Tools menu. Each directory in addins
appears as a new menu in formal modules. Subdirectories appear as submenus.

The order of menu items as well as their names, mnemonics and accelerators are defined in an index file with the same
name as the library directory but with a . 1dx extension.

As an example, see the user-defined function £n.dx1 included in the formal module menus:
dxl/addins/addins.hlp
addins.idx
user/user.hlp
user.idx

fn.dx1l

Library description file format

Each library must contain a description file for the library with the same name as the directory but with a . hlp extension.

The first line of the description file is a one-line description of the library. The rest of the file can expand on this, with
descriptive text providing detailed information about the library.

Example
This example is the start of file: $DOORSHOME/dx1/addins/acme/acme.hlp:

DXL Reference Manual

628

The ACME Spindles Inc DXL function library
This library contains a set of functions
developed by ACME Spindles Inc to support
our internal use of Rational DOORS.

Menu index file format

Each subdirectory within the addins directory can contain a menu index file with the same name as the directory but with
a . 1dx extension. Each line of the menu index file must contain:

* DXL file or directory name, without extension

* mnemonic (character used with ALT to access menu from keyboard)

* accelerator (character used with CTRL to access menu from keyboard); an underscore means no accelerator
* menu label

A line containing only hyphens (=) (as in line 3 of the following example), inserts a separator within the menu.
Example

This example is the first four lines of file $DOORSHOME /dx1/addins/acme/acme. idx:

comps C _ Component book

template T Templates

parsers I _ Input parsers

Menu DXL file format

Each DXL file to be included in the menu must conform to the following comment convention:

* The first line of the file contains a // comment with a single-line description of the program, which appears in the
DXL Library window.

* This must be followed bya /* ... */ multi-line comment which describes in more detail what the program does.
This can be viewed from the DXT. Library window by clicking the Describe button.

Example
File: $SDOORSHOME /dx1/addins/acme/example.dxl
// A simple example program

/*
This program simply displays an ack box.

*/

ack "This is a Menu DXL example program"

DXL Reference Manual

629

Alternative Addins Location

Additional addins directories can also be created outside of the standard Rational DOORS installation path. Here are steps
on how to create a such a configuration on a Rational DOORS client machine:

* Create the directory where you want to contain your addins library, which can be created on any drive, for example
E:\addins. Each library must contain a description file for the library with the same name as the directory but with
a .hlp extension. See above for further details.

* Create another directory for your DXL, for example E : \addins\MyDXL. Again, each directory must contain a
description file for the library with the same name as the directory but with a . h1p extension. See above for further
details.

e Add your DXL, making sure the comment convention used in ‘Menu DXL file format’ above is adhered to.
* Create a Registry string value for your addins:

. ThisiscreatedinthekeyHKEY_LOCAL_MACHINE\SOFTWARE\TelelOgiC\DOORS\<DOORS version
number>\Config

* A new string value should be created in this key with “Value Name’ set to ‘Addins’ and “Value Data’ set to the path
of the addins directory, for example E : \addins

Module status bars

This section defines functions for the module window status bar, in which Rational DOORS displays information such as
the user name, access rights, or other information. These functions allow your DXL program to place information in the
status bar.

status

Declaration

void status (Module m,
string message)

Operation

Displays string message in the left-most field of the status bar of module m.

Example

status (current Module, "Power validated")

DXL Reference Manual

630

menuStatus

Declaration

void menuStatus (Module m
[,string messagel])

Operation

Displays string message in the full status bar area of module m, in the same way that help menu explanations are

displayed.
If message is omitted, the status bat returns to its normal state.

Example

menuStatus (current Module, "Module exported in
GREN III format")

updateToolBars

Declaration

void updateToolBars (Module m)

Operation

Redraws the tool bars for module m. This might be needed when certain display modes are altered using a DXL program.

Rational DOORS built-in windows

This section gives the syntax for functions that operate on Rational DOORS built-in windows. The functions use an

internal data type, so declarations are not stated.

See also “Scrolling functions,” on page 699.

window

Syntax

window m

Operation

Returns a handle to the window displaying module m, for use in the width and height functions.

Example

print width window current Module

DXL Reference Manual

631

show (window)

Syntax

show win

Operation

Shows a Rational DOORS built-in window, if it is available.

hide

Syntax

hide win

Operation
Hides a Rational DOORS built-in window, if it is showing,.

Specific windows

Syntax
editor (attrRef)
print (m)
where:
m is a module of type Module
attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)
(Link 1) . (string attrName)
Operation

These functions return the appropriate window, for use with show (window) and hide, as follows:

editor (attrRef) object attribute editor
print print

Example

show editor (current Object) ."Status"

show print current Module

DXL Reference Manual

632‘

Module menus

This section lists constants and gives the syntax for functions that create and manage menus. Many of the functions use
internal data types, so declarations are not stated. For examples of how to build menus, look in
$DOORSHOME/1ib/dx1/config.

Standard menus and submenus

The following constants are defined as standard menus and submenus:
clipCopyMenu
clipPasteMenu
clipboardMenu
projectMenu
moduleMenu
editMenu
oleMenu
viewMenu
objectMenu
linkMenu
linksetMenu
attributeMenu
columnMenu
extractMenu
toolsMenu
usersMenu
optionsMenu
helpMenu
objCopyMenu
objCreateMenu
objMoveMenu

objUnlockMenu

Standard items

The following constants are defined as standard items:

DXL Reference Manual

OLECutItem

OLECopyItem
OLEPasteItem
OLEPasteSpecialltem
OLEClearItem
OLEInsertItem
OLERemoveItem
OLEVerbItem

attrDeflItem
attrTypeltem
clipCutItem
clipCopyFlatItem
clipCopyHierItem
clipPasteltem
clipPasteDownItem
clipClearItem
columnCreateItem
columnEditItem
columnDeleteItem
columnLeftJustifyItem
columnRightJustifyItem
columnCenterJustifyItem
columnFullJustifyItem
columnUseInGraphicsItem
columnUseAsToolTipsItem
dispGraphicsItem
dispOutlinelItem
dispFilterDescendantsItem
dispFilteringItem
dispSortingItem
dispDeletionItem
dispRegOnlyItem
dispFilterParentsItem

dispGraphicsLinksItem

DXL Reference Manual

633

634

dispGraphicsToolTipsItem
dispLevelAllItem
dispLevellItem
dispLevel2Item
dispLevel3Item
dispLeveldItem
dispLevel5Item
dispLevel6Item
dispLevel7Item
dispLevel8Item
dispLevel9Item
dispLevellOItem
editDXLItem
editUsersItem
EXIT Item
extractSetupltem
extractSameItem
extractDownItem
filterItem
helpContentsItem
helpSearchItem
helpIndexItem
helpHelpItem
helpProjManItem
helpFormalItem
helpDescriptiveltem
helpLinkItem
helpAboutItem
inplaceRejectItem
inplaceAcceptItem
inplaceHeadingItem
inplaceTextItem
inplaceAttrItem

inplaceResetAttrItem

DXL Reference Manual

linkCreateItem
linkEditItem
linkDeleteItem
linkSourceItem
linkTargetItem
linkMatrixItem
linkGraphicsItem
linksetCreateltem
linksetDeleteltem
linksetRefreshItem
modAccessItem
modAttrEditItem
modBaselineltem
modCloseItem
modHistoryItem
modLayoutItem
modPrintItem
modSaveltem
modDowngradeItem
modPrintPreviewItem
objAccessItem
objCompressItem
objUncompressItem
objCompressionItem
objCopyIltem
objCopyDownItem
objCreateltem
objCreateDownItem
objDeleteltem
objUndeleteltem
objPurgeltem
objEditItem
objHistoryItem

objMoveltem

DXL Reference Manual

635

636

objMoveDownItem
objLockItem
colorOptionsItem
fontOptionsItem
optionsSaveltem
optionsRestoreltem
optionsDefaultsItem
pictureltem
createProjectItem
openProjectItem
deleteProjectItem
undeleteProjectItem
purgeProjectItem
duplicateProjectItem
closeProjectItem
projectAttrItem
unlockModulesItem
purgeModulesItem
projectArchiveltem
projectRestoreltem
createFormalModuleItem

createLinkModuleItem

createDescriptiveModuleItem

openModuleEditItem
openModuleShareItem
openModuleReadItem
deleteModuleItem
undeleteModuleItem
purgeModuleItem
duplicateModuleItem
renameModuleItem
archiveModuleItem
restoreModuleItem

showFormalModulesItem

DXL Reference Manual

637

showLinkModulesItem
showDescriptiveModulesItem
showDeletedModulesItem
showDeletedProjectsItem
sortNameItem
sortTypeltem
sortDescriptionItem
selectItem

deselectItem

sortItem

spellCheckItem

undoItem

redoItem
viewCreateltem
viewShowItem

viewDeleteItem

Standard combo box controls

The following constants are defined as standard combo box controls:
linksetCombo
viewCombo

helpCombo

createMenu

Syntax

createMenu (menulIdentifier
[,string label,
char mnemonic,
string dxlDirectory])

createMenu (int mappingFunction(),
string label,
char mnemonic,
string dxlFile)

DXL Reference Manual

638

Operation

Creates a standard or configurable menu or submenu, according to context. The arguments are defined as follows:

menuldentifier Provides a standard menu definition, which is particularly
useful as a source of menu gray-out behavior; for a standard
menu, it must take one of the values listed in “Standard
menus and submenus,” on page 632.

label The text of the menu item or null.

mnemonic The character of the label that is to be used with ALT for
keyboard access, or null.

dxlDirectory Provides the name of a standard-format DXL library
ditectory, or null.

mappingFunction () Callback function which returns an integer that specifies
whether the menu item is available, checked, or invisible;
possible values ate:
menuAvailable
menuAvailableChecked
menuUnavailable

menulnvisible

Note: This functionality is not supported for menus
created on the module menu bar. It is just for
menus within these menu bar menus that have
been created. Mapping functions have to be
defined in a file inside
$DOORSHOME\1lib\dxl\startupfiles
and cannot be in the same file as the perms that
call them.

dxl1File Full path name of the DXL file containing the menu.

For a standard menu only the menuIdentifier is requited. For a configurable menu or submenu,
menuIdentifier provides basic information, including predefined gray-out behavior. In this case it can also be null.
If not null, Iabel and mnemonic override the predefined appearance of the menu. If not null, the contents of
dxlDirectory are used for the menu.

The second form takes a DXI. mapping function as a callback. If not null, the contents of dx1File are used for the
menu.

Example

createMenu moduleMenu

DXL Reference Manual

639

createButtonBar

Declaration

void createButtonBar ([string name, Sensitivity mappingCallback (), bool newRow,
bool showName])

Operation

Creates a button bar in a module ot uset-created dialog box. If the name is supplied the toolbar will be hosted in a container
control at the top of the dialog, if not it will be generated on the canvas. The newRow parameter defines whether the
toolbar is shown on a new row within the container control or not. The showName parameter defines whether the name
of the toolbar is shown or not. Both newRow and showName are mandatory when the toolbar is hosted outwith a canvas.

When a user right-clicks within the container control of a dialog, a context menu will be shown to allow the user to show or
hide the toolbars inside it. The mapping callback function is called for each toolbar if provided to allow the DXL to control
the display of context menu items for the given toolbar. It can be set to null. The function must return one of the following
Sensitivity values:

ddbUnavailable The tool is unavailable.
ddbAvailable The tool is active.
ddbChecked The tool is active and has a check beside it.
ddbInvisible The tool is not shown
createltem
Declaration

void createltem(standardItem
[,string label,
char mnemonic,
char accelerator,
{IconID icon id|string iconFileName},
string tooltip,
string helptext,
string inactiveHelp,
string dxlFile])

void createltem(int mappingFunction(),
string label,
char mnemonic,
char accelerator,
int modifierKeyFlags,
{IconID icon id|string iconFileName},

DXL Reference Manual

640

string tooltip,
string helptext,
string inactiveHelp,
string dxlFile)

void createltem(int mappingFunction(),
void dxlCallback(),
string label,
char mnemonic,
char accelerator,
int modifierKeyFlags,
{IconID icon id|string iconFileName},
string tooltip,
string helptext,
string inactiveHelp)

Operation

Creates a DXL menu item in a module or user-created dialog box. In the first form, if the optional arguments are omitted,
creates a standard item. The arguments are defined as follows:

standardItem Provides a standard menu item definition, which is particularly
useful as a source of menu gray-out behavior; it must have one of
the values listed in “Standard items,” on page 632.

label The text of the menu item.

mnemonic The character of the label that is to be used with ALT for
keyboard access or null.

accelerator The character that is to be used with the CTRL for direct
keyboard access or null. This option does not function for
pop-up menus.

modifierKeyFlags Used in conjunction with the accelerator parameter to
change which key should be pressed with the accelerator key.
Possible values are modKeyNone, modKeyCtrl,
modKeyShift and null

icon_id The icon identifier of the standatd icon, used for button bars only
or null; it must have one of the values listed below.

iconFileName The file to be used as an icon. Must be a valid icon format .ico file.
tooltip Text to be displayed in the button-bar tooltip or null.
helptext Text to appear in the status bar for the item (if active) or null.
inactiveHelp Text to appear in the status bar for the item (if inactive) or null.

DXL Reference Manual

dx1lFile

mappingFunction ()

dx1lCallback ()

Complete path name of the DXL file to execute or null (usually
null).

Callback function which returns an integer that specifies whether
the menu item is available, checked, or invisible; possible values
are:

menuAvailable
menuAvailableChecked
menuUnavailable

menulnvisible

Mapping functions have to be defined in a file inside
$DOORSHOME\ 1ib\dx1\startupfiles and cannot be in
the same file as the perms that call them.

Callback function which runs when the menu is selected (instead
of running a DXL file).

The possible values for IconID constants are:

levelAllIcon
levellIcon
level2Icon
level3Icon
leveld4Icon
level5Icon
level6Icon
level7Icon
level8Icon
level9Icon
levellOIcon
dispGraphicsIcon
dispOutlineIcon
dispFilterIcon
dispSortIcon
createObjSameIcon
createObjDownIcon
deleteObjIcon

columnInsertIcon

DXL Reference Manual

641

642

columnEditIcon
columnRemoveIcon
justifyLeftIcon
JjustifyRightIcon
justifyCenterIcon
JjustifyFullIcon
folderOpenIcon
folderNewIcon
folderCloseIcon
projOpenlIcon
projNewIcon
projCloseIcon
editUsersIcon
createModIcon
editModIcon
shareModIcon
readModIcon
copyModIcon
deleteModIcon
createLinkIcon
editLinkIcon
deletelLinkIcon
matrixModeIcon
startLinkIcon
endLinkIcon
createlLinksetIcon
createFormalModIcon
createlLinkModIcon
deletelinksetIcon
editHeadingIcon
editTextIcon
extractObjIcon
extractOneDownIcon

showMarkedObjsIcon

DXL Reference Manual

spellcheckIcon
undeleteModIcon
increaselevelIcon
decreaselLevelIcon
nolcon

yesIcon

wordIcon
projWizIcon
viewWizIcon
layWizIcon
repWizIcon
repManIcon
tableCreatelIcon
tableInsertRowIcon
tablelInsertColIcon
tableSetBordersIcon
textBold
textItalic
textUnderline
textStrikeThrough
savelcon

printIcon
propertiesIcon
copylcon

cutIcon

pastelcon

deletelcon

Example

createltem(linkCreatelItem, "Create link",
null, null, null, null, null,

VCI,
null)

DXL Reference Manual

643

644

createCombo

Syntax

createCombo ({linksetCombo |viewCombo})

Operation

Creates a standard combo box in a toolbat.

Example
createButtonBar
separator

createCombo viewCombo
separator

end buttonbar

createEditableCombo

Syntax

createEditableCombo ({linksetCombo |viewCombo})

Operation

Creates an editable combo box in a toolbar

createPopup

Declaration

void createPopup ()

Operation

Creates a popup menu in a module or user-created dialog box.

separator(menu)

Declaration

void separator ()

Operation

Adds a menu separator.

DXL Reference Manual

645

end(menu, button bar, popup)

Syntax

end ({menu|buttonbar |popup}

Operation

Ends a menu, button bar or popup section.
Example

end menu

end buttonbar

end popup

DXL Reference Manual

646

DXL Reference Manual

647

Chapter 26
Display control

This chapter describes DXL functions that control what information is displayed in Rational DOORS module windows.
* Filters

* Compound filters

* Filtering on multi-valued attributes

* Sorting modules

* Views

* View access controls

* View definitions

* Columns

e Scrolling functions

* Layout DXL

Filters

This section defines operators and functions for building display filters.

The data type Filter enables the construction of complex filters which can then be applied with the set command. The
data type LinkFilter can take one of the following values:

linkFilterIncoming
linkFilterOutgoing
linkFilterBoth

These enable the construction of filters with reference to incoming links, outgoing links, or both. They are used with the
hasLinks and hasNoLinks functions.

The DXL functions for filtering mimic the capability provided by the Rational DOORS user interface, except for accept
and reject, which allow a DXL program to set an arbitrary filter.

Note: If you define an advanced filter and specify a rule such as <dx1Attribute> contains <sometext>,the
filter runs on all objects in the module when you add the rule to the list of rules. If this creates excessive delays in
the filter implementation, you can modify this behavior by replacing the filter gui.inc file. With this
modified file, the rule is applied only after you click Apply. You are then prompted to apply the rule to each
module using the Next and Previous buttons. The filter gui.inc fileis located in the
\lib\dxl\standard\filter directory. You can obtain the revised file at the technote
http://www.ibm.com/support/docview.wss?uid=swg21585679. Back up the current £ilter gui.inc file
before replacing it.

DXL Reference Manual

648 ‘

attribute(value)

This function is used to generate a filter attribute handle, as shown in the following syntax:
attribute (string attrName)

The returned handle for the attribute named at t rName is used by other functions.

Example
This example filters on all objects in the current module that have a "Priority" attribute value of "Mandatory".

set (attribute "Priority" == "Mandatory")

column(value)

Syntax

Filter column (string ColumnName,
string SearchText
[, bool CaseSensitive,

bool RegularExpression])

Operation

Filters on the contents of ColumnName. The last two parameters are optional.

Attribute comparison

Operators can be used to compare filter attribute handles and text strings.

Syntax
The syntax for using these operators is as follows:

attribute(string attr) operator string text

where:
attr is the name of the attribute
operator isoneof == = < <= > >=
text is a string

Operation

Compares the filter attribute handle returned by the call to attribute with the string text. If text is a variable of
another type, you can convert it to a string by concatenating it with the empty string.

DXL Reference Manual

649

Example

This example filters on only those objects in the current module that have attribute "Cost" values greater than 4:
set (attribute "Cost™ > "4")

// using wrong type

real cost = 4.0

set (attribute "Cost" > cost "")

accept

Declaration
void accept (Object o)

Operation

Marks object o as accepted under the current filter. This enables a DXL program to set an arbitraty filter on the current
module. Compare with the reject function.

addFilter
Declaration
void addFilter ([Module m,]
Filter f
int &accepted,
int &rejected)
Operation

Adds a filter in the current module, or to module m where it is specified. The third and fourth parameters pass back the
number of objects accepted and rejected respectively under the filter.

contents

Declaration

Filter contents(string text[, bool caseSensitivel[, bool useRegExp]l])

Operation

Filters on objects that include the string text in any string or text attributes. If caseSensitives set to true, the
filter takes character case into account when searching. If caseSensitiveis false, the filter ignores case. If
caseSensitive is omitted, the filter accepts regular expressions.

The optional useRegExp parameter enables the use of regular expressions to be specified independently of case

sensitivity.

DXL Reference Manual

650

Example

This example matches objects that contain literally £. *h, butnot F. *H, £.*H, or F'. *H.

Filter f = contents("f.*h", true)

This example matches objects that contain the regular expression f. *h, for example, fish or fourteenth.

Filter £ = contents "f.*h"

contains

Declaration

Filter contains (attribute(string attributeName)), string text, [bool
caseSensitive[, bool useRegExp]])

Operation

Filters on objects that include the string text in a specific attribute at tributeName. If caseSensitive is set to
true, the filter takes character case into account when searching. If caseSensitiveis false, the filter ignores case.
If caseSensitive is omitted, the filter accepts regular expressions.

The optional useRegExp parameter enables the use of regular expressions to be specified independently of case
sensitivity.

Example

Module m = current

Filter £ = contains(attribute "Object Text", "shall", false)

set f

filtering on

excludeCurrent

Declaration

Filter excludeCurrent ()

Operation

Excludes the current object from the filter.

excludelLeaves

Declaration

Filter excludeLeaves ()

DXL Reference Manual

651

Operation

Excludes leaves from the filter.

filterTables

Declaration

vold filterTables (bool onOff)

bool filterTables (Module m)

Operation

The first form sets whether tables ate filtered in the current module.

The second form returns whether table contents are being filtered in the specified module m.

getSimpleFilterType

Declaration
int getSimpleFilterType (Filter)

Operation

Returns the type of the simple filter; attribute, link, object, or column. Please note that the returned value corresponds to the
index of the appropriate tab page on the filter dialog. If the specified filter is not a simple filter, -1 is returned.

getAttributeFilterSettings

Declaration

bool getAttributeFilterSettings (Module,
Filter,
string& attributeName,
int& comparisonType,
string& comparisonValue,
boolé& matchCase,

boolé& useRegexp)

Operation
Returns details of the specified attribute filter in the return parameters. The function returns false if the filter is not a
valid attribute filter.

The comparisonType paramenter returns the internal index of the comparison. This is different to the index that is
used in the associated combo box on the filter dialog. The translation is performed by the DXL code.

DXL Reference Manual

652

getLinkFilterSettings_

Declaration

bool getLinkFilterSettings (Module,
Filter,
boolé& mustHave,
int& 1inkType,

string& linkModuleName)

Operation

Returns details of the specifed link filter in the return parameters. The function returns false if the filter is not a valid link
filter.

The 1inkType parameter returns a value that maps directly to the appropriate combo box.

The 1inkModuleName parameter returns an asterisk if links are allowed through any module, or the module name.

getObjectFilterSettings_

Declaration
bool getObjectFilterSettings (Module,
Filter,

int& objectFilterType)

Operation

Returns details of the specified object filter in the return parameter. The function returns false if the filter is not a valid
object filter.

The objectFilterType parameter returns a value that maps directly to the radio group on the dialog.

getColumnFilterSettings_

Declaration

bool getColumnFilterSettings (Module,
Filter,
string& columnName,
string& comparisonValue,
bool& matchCase,

bool& useRegExp)

DXL Reference Manual

653

Operation

Returns details of the specified column filter in the return parameters. The function returns false if the filter is not a valid
column filter.

includeCurrent

Declaration

Filter includeCurrent ()

Operation

Includes the current object in the filter.

includeLeaves

Declaration

Filter includeLeaves ()

Operation

Includes leaves in the filter.

hasLinks

Declaration

Filter hasLinks (LinkFilter value,
string linkModName)

Operation

Includes in the filter objects that have links through link module 11inkModName. The string can also take the special value
"* " which means any link module. The value argument defines the type of links; it can be one of
linkFilterIncoming, linkFilterOutgoing,or linkFilterBoth.

Example

This example filters on objects that have incoming links through any link module:
Module m = current

Filter £ = hasLinks(linkFilterIncoming, "*")

set (m, f)

filtering on

DXL Reference Manual

654

hasNoLinks

Declaration

Filter hasNoLinks (LinkFilter wvalue,
string modName)

Operation

Includes in the filter objects that have no links through link module 1inkModName. The string can also take the special
value " * ", which means any link module. The value argument defines the type of links; it can be one of
linkFilterIncoming, 1inkFilterOutgoing,or linkFilterBoth.

Example
This example filters on objects that have neither incoming nor outgoing links through the link module Project Links:
Module m = current

Filter f = hasNoLinks(linkFilterBoth,
"Project Links")

set (m, f)

filtering on

isNull

Declaration

Filter isNull (attribute (string attrName)

Operation
Returns true if the call to attribute returns null.

Returns false if the call to attribute returns an attribute other than null.

notNull

Declaration

Filter notNull (attribute (string attrName))

Operation
Returns true if the call to attribute returns an attribute other than null.

Returns false if the call to attribute returns null.

DXL Reference Manual

655

reject

Declaration

void reject (Object o)

Operation

Marks object o as rejected under the current filter. This enables a DXL program to set an atbitraty filter on the current
module. Compare with the accept function.

Example
Object o
filtering off
// following loop only accesses displayed objects
// cycle through all displayed objects
for o in current Module do {
bool accepted = false
Link 1
for 1 in o->"*" do {
// accept o if any out going links
accept o
accepted = true
break
}
if (laccepted)
{

reject o // no outgoing links, reject o

}

filtering on // activate our new filter

DXL Reference Manual

656 ‘

seft(filter)

Declaration

void set (Module m,
Filter f
[,int &accepted,
int &rejected])

Operation

Applies the filter in the current module, or to module m where it is specified. The third and fourth parameters return the
number of objects accepted and rejected respectively under the filter.

stringOf(filter)

Declaration

string stringOf (Module m,
Filter f)

Operation

Returns a string representation of filter £ in module m.

ancestors(show/hide)

Declaration

void ancestors (bool show)

Operation

Shows filtered object ancestors if show evaluates to true. Hides filtered object ancestors if Show evaluates to false.

ancestors(state)

Declaration

bool ancestors (Module myModule)

Operation

Returns true if filtered object ancestors are showing in the specified module. Returns false if filtered object ancestors

are not showing in the specified module.

DXL Reference Manual

applyFiltering

Declaration
void applyFiltering (Module)

Operation

Sets the module explorer display to reflect the current filter applied to the specified module.

unApplyFiltering

Declaration
void unApplyFiltering (Module)

Operation

Switches off filtering in the module explorer for the specified module.

applyingFiltering

Declaration
bool applyingFiltering (Module)

Operation

Returns a boolean indicating whether filtering is turned on in the module explorer for the specified module.

Filters example program

// filter DXL example
/*

example program building DXL filters
can be used in Car Project "Car user regts"
module.

*/

// "show" sets the passed filter, refreshes
// the screen and waits for the next filter.

//

void show (Filter f, bool last, string what) {
set f

refresh current

DXL Reference Manual

657

658

if (!last) what = what "\n\nready for next
filter?"
ack what
}

load view "Collect reqgts" // 1f present
filtering on
// declare a filter

Filter fl1 = attribute "Acceptability" ==
"Acceptable"

// display it
show (fl, false, "Acceptability == Acceptable")
// a compound filter

Filter f2 = fl1 && attribute "Priority" !=
"luxury"

show (f2, false, "previous filter && Priority !=
luxury")

Filter f3 = excludeleaves
show (f3, true, "exclude Leaves")

filtering off

Compound filters

Compound filters can be constructed.

Syntax

Filter compound = Filter 1 operator Filter 2
[operator Filter 3]...

where:
compound is a variable
operator is one of: && meaning AND
[l meaning OR
! meaning NOT
123 are strings

DXL Reference Manual

659

Operation

Combines filters to create a complex filter.

Examples
This example filters on those objects that contain the words shall or must, regardless of case.

Filter required = contents("shall", false) || contents("must", false)

This example shows the use of the getCompoundFilterType and getComponentFilter (filter functions.
See the sections below this example for the declarations and operations of these functions.

Filter f1 = attribute "Object Heading" == ""
Filter f2 = contents("shall", false) || contents ("must", false)

Filter f fl && £2

Module m = current

void decomposeFilter (Filter f,string tabStr)
{
print tabStr "" stringOf(m, f) "\n"
tabStr = tabstr " "

int ct = getCompoundFilterType f

if (ct == -1) print ""

else if (ct == 0) print tabStr "AND\n"

else if (ct == 1) print tabStr "OR \n"

else if (ct == 2) print tabStr "NOT\n"

else print tabStr "??22\n"
int 1 =0

Filter fl = getComponentFilter (f,i++)
while (!null f1)

{
decomposeFilter (f1, tabStr " ")

fl = getComponentFilter (f,i++)

}

decomposeFilter (f,"")

DXL Reference Manual

660

The output is as follows:

(Object Heading is empty) AND ((Contains 'shall') OR (Contains 'must'))
AND

Object Heading is empty
(Contains 'shall') OR (Contains 'must')
OR
Contains 'shall'

Contains 'must'

In the special case where a user-defined attribute used in a filter has been deleted or an enumeration value used has been
deleted, the filter clause will be omitted.

Filter fl1 = attribute "theEnum" == "A"

Filter f2 = contents("shall", false) || contents("must", false)

Filter £ = f1 && £f2

When theEnum type has a value 'A', the following is output:

(theEnum == A) AND ((Contains 'shall') OR (Contains 'must'))
AND

TheEnum ==
(Contains 'shall') OR (Contains 'must')
OR
Contains 'shall'

Contains 'must'

If the filter is saved in a view and then the enumeration 'A' is deleted, when the view is reloaded, the output is as follows:

Filter f = current //i.e. the view - we cannot generate a filter with invalid
values.

((Contains 'shall') OR (Contains 'must'))

AND

DXL Reference Manual

661

(Contains 'shall') OR (Contains 'must')
OR
Contains 'shall'
Contains 'must'

where the AND clause appears to have only one input.

getCompoundFilterType__

Declaration
int getCompoundFilterType (Filter)

Operation

This perm can be used to decompose compound filters into their component parts for analysis, and potential modification

or replacement.

Returns an integer value indicating the type of the specified filter.

It returns one of the following new DXL constant values for compound filter types:
int filterTypeAnd

int filterTypeOr

int filterTypeNot

It returns -1 for a simple filter. The test for a negative value suffices to indicate that the filter is not compound, as the new
constants are all positive values.

If no filter is supplied, a run-time DXL error is generated.

Example

See examples in Compound filters above.

getComponentFilter

Declaration

Filter getComponentFilter (Filter, int index)

Operation

This perm can be used to decompose compound filters into their component parts for analysis, and potential modification
or replacement.

Returns an integer value indicating the type of the specified filter.
It returns one of the following new DXL constant values for compound filter types:
int filterTypeAnd

int filterTypeOr

DXL Reference Manual

662

int filterTypeNot

This perm teturns a component filter that is part of the supplied compound filter. If the compound filter is of type
filterTypeNot, the index must be zero, or the perm returns null. If the compound filter is of type
filterTypeOror filterTypeAnd, anindex of 0 or 1 returns the first or second sub-filter, and any other index
value returns null.

If the supplied filter is not a compound filtet, the perm returns null.
If no filter is supplied, a run-time DXL error is generated.
Example

See examples in Compound filters above.

Filtering on multi-valued attributes

'This section defines the functions that can be used to filter on multi-valued attributes.

includes

Declaration

Filter includes (attribute (string attrName),
string s)

Operation
Returns the definition of a simple filter on a multi-valued attribute named at tr, where s contains the filtering value.

If the attribute contains s, it is included in the filter set. The string s can only contain one value.

Example
This example filter set includes all objects with multi-valued attributes, one value of which is "ABC":
Filter fl = includes (attribute "attribute name",
"ABC")
set fl

filtering on

excludes

Declaration

Filter excludes (attribute (string attrName),
string s)

DXL Reference Manual

663

Operation
Returns the definition of a simple filter on a multi-valued attribute, where s contains the filtering value.

If the attribute contains s, it is excluded from the filter set. The string s can only contain one value.

Example

This example filter set excludes all objects with multi-valued attributes, one
value of which is "ABC":

Filter f2 = excludes (attribute "attribute name", "ABC")
set f2

filtering on

Sorting modules

This section defines the operators and functions that allow you to sort a formal module in a similar way to the Rational
DOORS user interface. These language elements use the data type Sort.

ascending

Declaration

Sort ascending(string attrName)

Operation

Returns a type Sort, which sorts the current display with respect to the values of the object attribute named at t rName,
in ascending order.

Rational DOORS always refreshes the current module at the end of a script’s execution. If a sorted display is to be viewed
before that time, you must call refresh current Module.

Example
set ascending "Absolute Number"

sorting on

descending

Declaration

Sort descending (string attrName)

Operation

Returns a type Sort, which sorts the current display with respect to the values of the object attribute named at trName,
in descending order.

DXL Reference Manual

664

Rational DOORS always refreshes the current module at the end of a script’s execution. If a sorted display is to be viewed
before that time, you must call refresh current Module.

Example
set descending "Absolute Number"

sorting on

Compound sort

Compound sort rules can be constructed, as shown in the following syntax:

Syntax
Sort compound = Sort 1 && Sort 2
where:
compound is a variable
&& means AND
12 are strings
Operation

Combine a first sort with a second sort which discriminates between the objects that share the same value in the first sort.

Example
This example sorts by the user who created the object and then by the most recently created objects:

Sort compound = ascending "Created By" &&
descending "Absolute Number"

set compound

sorting on

set(sort)

Declaration

void set ([Module m,]
Sort s)

Operation

Applies the sort tule s in the module specified by m o, if mis omitted, in the current module. The command sorting can
be used to display sorted output in the current module.

DXL Reference Manual

665

sorting

Declaration
void sorting(bool onOff)

Operation

Displays sorted output in the current module.
Example
set descending "Absolute Number"

sorting on

stringOf(sort)

Declaration

string stringOf (Sort s)

Operation

Returns a string representation of sort s in the current module.

isAscending

Declaration

bool isAscending(Column c)

Operation

Determines whether a column ¢ is sorted in ascending order. If the column is not sorted then false is returned.

isDescending

Declaration

bool isDescending (Column c)

Operation

Determines whether a column ¢ is sorted in descending order. If the column is not sorted then false is returned.

DXL Reference Manual

666

for sort in sort

Declaration

for s in sr do {

where
s is a vatiable of type Sort
sr is a variable of type Sort
Operation
Assigns s to be each successive sort in a given compound sort Sr.
Example
This example prints all sorting information for the currently defined sort in the current module. Must be run from an open
module.
Sort sr = current
Sort s

for s in sr do {
print stringOf s”\n”
}

destroySort

Declaration

void destroySort (Module m)

Operation

This perm removes any sott criteria stored with the specified module m

Sorting example program

// sort DXL example

/*
example program building DXL sorts

*/

Sort sl = ascending "Absolute Number"

DXL Reference Manual

667

Sort s2 = descending "Absolute Number"
sorting on
refresh current
set sl

ack "hello"

set s2

refresh current
ack "hello"

set sl

refresh current
ack "hello"

set s2

refresh current

Views

This section defines functions and a for loop for building and manipulating Rational DOORS views. Some of these
clements use the View data type, which is a handle created for use by other functions.

If a view is to be created you must make sure that the module is in display mode.

The standard view is displayed by default. It cannot be altered or deleted, but can be loaded.

currentView

Declaration

string currentView (Module m)

Operation

Returns the name of the view that is currently selected for the given module.

descendants(show/hide)

Declaration

void descendants (bool expression)

Operation

Shows descendants in the module window if expressionis true. Hides descendants if expressionis false

DXL Reference Manual

668

descendants(state)

Declaration

bool descendants (Module m)

Operation

Returns true if the current view in module mis set to show descendants; otherwise returns false.

view

Declaration

View view([Item item,]
string viewName)

Operation

Returns a handle to a specific view in 1 tem, or if 1 temis omitted, the current module. The i tem argument must have the
value Formal or Descriptive (a formal or descriptive module). If i temis any other value, the function returns
null.

The view need not exist; if it does not, a new view is created but not saved until the save (view) function is called.

delete(view)

Declaration

string delete([Module m,] View v)

Operation

Deletes the view having handle v from module m, or if mis omitted, from the current module. The returned string is
non-NULL on error, else NULL.

Example
View v = view("Basic view")
string s = delete(v)

setPreloadedView

Declaration

bool setPreloadedView (ViewDef view, string name)

DXL Reference Manual

669

Operation

Sets the preloaded view name for the specified ViewDef viiew. Returns t rue on success, and false on failure. Will fail
and generate a run-time DXL error if there is no current module. Will also fail if the specified name does not designate a
view in the current module to which the current user has Read access.

Note that this perm does not check the relative access controls on the inheriting and inherited views, because the ViewDef
view does not include access controls. These checks are made if and when the ViewDef settings are saved using the
change ot save perm.

preloadedView

Declaration

string preloadedView (ViewDef view)

Operation

Returns the preloaded view name for the specified ViewDef view. Returns a null (empty) string if no preloaded view is
specified for this ViewDef view, or if the current user does not have read access to the inherited view. Generates a
run-time DXL etror and returns an empty string if there is no cutrent module.

isinheritedView

Declaration

bool isInheritedView (string viewName)

Operation

This returns t rue if any view in the current module is configured to inherit settings from a view whose name matches the
supplied string viewName, and to which the current user has read access. The user does not need to have read access to
the inheriting view for this perm to return true. It generates a run-time DXL error and returns false if there is no current

module.

isValidName

See “isValidName,” on page 287.

linkindicators(show/hide)

Declaration

void linkIndicators (bool show)

Operation

Shows the link indicators in the current module if show evaluates to t rue. Hides the link indicators in the current module
if show evaluates to false.

DXL Reference Manual

670

linkindicators(state)

Declaration

bool linkIndicators (Module myModule)

Operation

Returns true if link indicators are showing in the specified module. Returns false if link indicators are not showing in
the specified module.

load

Declaration
bool load([Module m,] View v)

bool load(Module m, View v, bool queryUnsavedChanges)

Operation

Attempts to load the view handle v in module m, or if m is omitted, in the current module. Supports loading the standard
view. If the function fails, it returns false.

If the Module parameter is supplied, then supplying the queryUnsavedChanges flag is also possible. If set to true,
and the view load will cause unsaved changes in the current view to be lost, and the users settings indicate that they wish to
be informed when view changes will be lost, a confirmation query will be given to the user. The view will not be loaded if
the user indicates they do not wish to lose the changes. This flag will only have an effect if the module is visible.

Example
load view "cost analysis"

load view "Standard view"

name(view)

Declaration

string name (View view)

Operation

Returns the name of view.

next, previous(filtered)

Declaration

Object next (Object o,
Filter filter)

DXL Reference Manual

671

Object previous (Object o,
Filter filter)

Operation

These functions return the next or previous object at the current level of hierarchy that matches filter.

clearDefaultViewForModule

Declaration

string clearDefaultViewForModule (Module m)

Operation

Clears the default view setting for the specified module. Returns a null string if the operation succeeds; otherwise, returns an

error message.

clearDefaultViewForUser

Declaration

string clearDefaultViewForUser (Module m)

Operation

Clears the default view setting, for the current user, for the specified module. Returns a null string if the operation succeeds;

otherwise, returns an error message.

getDefaultViewForModule

Declaration

string getDefaultViewForModule (Module m)

Operation

Returns the name of the default view for the specified module. If no default is specified, returns null.

getDefaultViewForUser

Declaration
string getDefaultViewForUser (Module m)

Operation

Returns the name of the default view for the current user, for the specified module. If no default is specified for the current

user, returns null.

DXL Reference Manual

672 ‘

save(view)

Declaration

voild save (View v)

Operation

Saves the view having handle v in the current module.

setDefaultViewForModule

Declaration
string setDefaultViewForModule (Module m,

string viewName)
Operation

Sets the default view for the specified module to viewName. Returns a null string if the operation succeeds; otherwise,

returns an error message.

setDefaultViewForUser

Declaration
string setDefaultViewForUser (Module m,

string viewName)
Operation

Sets the default view, for the current user, for the specified module, to viewName. Returns a null string if the operation

succeeds; otherwise, returns an error message.

showDeletedObjects(get)

Declaration
bool showDeletedObjects (void)

Operation

Returns true if the current view in the current module is set to show deleted objects; otherwise returns false.

DXL Reference Manual

673

showDeletedObjects(show/hide)

Declaration
void showDeletedObjects (bool show)

Operation

Shows deleted objects in the module window if show is true. Hides deleted objects if show is false.

showChangeBars(get)

Declaration

bool showChangeBars (Module module)

Operation

Returns true if the specified module shows object change bars. Otherwise, returns false.

showChangeBars(show/hide)

Declaration

void showChangeBars (bool show)

Operation

Sets the option for showing object change bars in the current module.

showGraphicsDatatips(get)

Declaration
bool showGraphicsDatatips (Module module)

Operation

Returns true if the specified module shows datatips in Graphics Mode. Otherwise, returns false.

showGraphicsDatatips(show/hide)

Declaration

void showGraphicsDatatips (bool show)

Operation

Sets the option for showing datatips in Graphics Mode in the current module.

DXL Reference Manual

674

showGraphicsLinks(get)

Declaration

bool showGraphicsLinks (Module module)

Operation

Returns true if the specified module shows links in Graphics Mode. Otherwise, returns false.

showGraphicsLinks(show/hide)

Declaration

void showGraphicsLinks (bool show)

Operation

Sets the option for showing links in Graphics Mode in the current module.

showingExplorer

Declaration

bool showingExplorer (Module module)

Operation

Returns true if the specified module is showing the Module Explorer. Otherwise, returns false.

showExplorer, hideExplorer

Declaration
void showExplorer (Module module)
void hideExplorer (Module module)

Operation

Sets the specified module to show or hide the Module Explorer.

showPrintDialogs(get)

Declaration

bool showPrintDialogs ()

DXL Reference Manual

675

Operation
Gets the cutrent setting for displaying print dialog boxes.

Printing from the Rational DOORS user interface, rather than from DXI., automatically sets showPrintDialogs back
to true.

showPrintDialogs(set)

Declaration

void showPrintDialogs (bool onOff)

Operation

Sets whether print dialog boxes should be displayed when printing from DXI.. This includes the printer selection dialog
box, the warnings issued when printing in graphics view, or in a view that spans more than one page.

When showPrintDialogs is turned off, the printer selection dialog box is not displayed, so the default Windows
printer, or the printer referred to in the appropriate environment variable on UNIX, is used for all printed output.

for view in module

Syntax

for s in views (Module m) do {

where:

s is a string variable

m is a module of type Module
Operation

Assigns the string s to be each successive view name in the module m.
Example

This example prints all views in the current module:

string name

in view u u
for name in ews current Module do
print name "\n"

DXL Reference Manual

676

canlnheritView

Declaration
string canInheritView (View v1, View v2, bool é&b)

string canInheritView (ViewDef vdl, View v2, bool &b)

Operation

The first form returns true if view v1 can inherit settings from view v2 in the current module according to access control
restrictions. The restrictions are that every user who has read access to v1 must also have read access to v2.

The second form determines whether a ViewDef can inherit settings from a View.
In both cases an error is returned on failure, or null on success.

Note that the test does not take into account group membership, so a user who is given specific access to v1 or vd1 and
who is granted access to v2 by virtue of group membership will not qualify v2 as inheritable.

clearlnvalidinheritance Of

Declaration

bool clearInvalidInheritanceOf (string viewname[, ViewDef vd])

Operation

This clears the preloadView setting of any views which currently inherit settings from the named view in the current
module if that inheritance is invalid according to the access rights constraints as reflected by the canlnheritView perm. It
returns true on success and false on failure, and generates a run-time DXL error if there is no current module or if the views
index file cannot be locked.

If the de fn argument is specified, then the validity test is applied as if the named view had the access controls in the defn
argument.

invalidInheritedView

Declaration

bool invalidInheritedView(string viewname[, ViewDef vd])

Operation

This returns true if any view in the current module is configured to inherit settings from a view of the specified name to
which the current user has read access, and the access control restrictions applied by canInheritView prohibit the
inheritance relationship. The user does not have to have read access to the inheriting view. If a ViewDef is specified, then
the restrictions are those which would apply if the view had the access rights contained within it.

DXL Reference Manual

677

setViewDescription

Declaration

void setViewDescription (ViewDef vd, string desc)

Operation

Sets the description for a view where vd is the view definition handle.

getViewDescription

Declaration

string getViewDescription (ViewDef vd)

Operation

Returns the description for a view where vd is the view definition handle.

for View in View

Syntax

for Viewl in View2 do {

where:
Viewl is a variable of type View
View2 is a variable of type View
Operation

Assigns Viewl to be each successive View whose settings can be inherited by the specified ViewZ2 according to the same
access control restrictions applied by the canInheritView perm.

DXL Reference Manual

678 ‘

View access controls

canCreate(view)

Declaration

bool canCreate (ModName modRef, View v)

Operation

Returns true if the current Rational DOORS user has create access to view v, which can be specified as in the module
modRe f. Otherwise, returns false.

canControl(view)

Declaration

bool canControl (ModName modRef, View V)

Operation

Returns t rue if the current Rational DOORS user can change the access controls on view v, which is specified as module
modRef. Otherwise, returns false.

canRead(view)

Declaration
bool canRead(ModName modRef, View V)

Operation

Returns true if the current Rational DOORS user can read view v, which is specified as the module modRe £. Otherwise,
returns false.

canModify(view)

Declaration

bool canModify(ModName modRef, View v)

Operation

Returns true if the current Rational DOORS user can modify view v, which is specified as module modRe f. Otherwise,
returns false.

DXL Reference Manual

679

canDelete(view)

Declaration

bool canDelete (ModName modRef, View V)

Operation

Returns true if the current Rational DOORS user can delete view v, which is specified as module modRe £. Otherwise,
returns false.

canWrite(view)

Declaration

bool canWrite (ModName modRef, View v)

Operation

Returns true if the current Rational DOORS user can write view v, which is specified as the module modRef.
Otherwise, returns false.

Views example program

// view DXL example

/* construct a new view containing a selection of
attributes. Save as the view "View DXL
example".

*/
string viewName = "View DXL example"

DBE attrList
// contains selection of attributes to display

void buildFn (DBE dbe) {
// construct view of attributes chosen

string attr

Column c
int n = 0 // number of existing columns
int 1 // column index

for ¢ in current Module do n++
// count the columns

for i in 1:n do
delete (column 0)
// delete n column 0Os

DXL Reference Manual

680

i=0

for attr in attrList do {
insert (column 1)
attribute (column i, attr)
width (column i, 100)
justify(column i, center)
i++

}

// important! (last column does not appear
// otherwise)

refresh current
save view viewName
}
// Main program

// first look to see if we have an old view to
// display

if (load view viewName)
ack "loaded the last constructed view for
this example program"
else
ack "first run of view dxl example"

DB viewDB = create "Create View"
string empty[] = {}

attrList = multiList (viewDB, "Attributes:", 5,
empty)

button (viewDB, "Build View", buildFn)
realize viewDB

// populate attrList

string attr

for attr in current Module do
insert (attrList, 0, attr)

show viewDB

View definitions

This section defines functions that use the ViewDef data type, which holds all the settings from the Advanced tab of the
Views dialog box, such as compression and outlining.

DXL Reference Manual

681

create(view definition)

Declaration

ViewDef create ([Module m,
bool allSettings])

Operation

Creates a view definition in the module m, ot if no arguments are supplied, in the current module. The allSettings
argument specifies whether by default all of the view settings are saved.

createPrivate

Declaration

ViewDef createPrivate ([Module m, bool allSettings])

Operation

This new perm creates a new private module view. It saves the view with non-inherited access, giving the current user full

access and everyone else no access.

createPublic

Declaration

ViewDef createPublic([Module m, bool allSettings])

Operation

This new perm creates a new public module view. It saves the view with non-inherited access, giving the current user full

access and everyone else Read access.

get(view definition)

Declaration

ViewDef get ([Module m,]
View v)

Operation

Returns the undetlying view definition in v for the specified module, or if mis omitted, for the current module.

DXL Reference Manual

682 ‘

change(view definition)

Declaration

ViewDef change (View v,
ViewDef viewDef
[,string viewName])

Operation

Changes the underlying view definition in v. Optionally, changes the name of the view.

delete(view definition)

Declaration

void delete (ViewDef viewDef)

Operation

Deletes the view definition viewDef from the current module. The returned string is non-NULL on error, else NULL.
Example

View v = view ("Basic View")

ViewDef vdef = get (v)

string s = delete(current Module, V)

save(view definition)

Declaration
void save ([Module m,]
View v,
ViewDef viewDef)

Operation

Saves the view definition viewDef into view v in module m, or if m is omitted, in the current module.

useAncestors(get and set)

Declaration
bool useAncestors (ViewDef viewDef)

void useAncestors (ViewDef viewDef,
bool save)

DXL Reference Manual

683

Operation

The first form returns t rue if the option to save the advanced filter option for showing ancestors is currently set.
Otherwise, returns false.

The second form sets the option to save the advanced filter option for showing ancestors.

If the option for showing ancestors is set, a filtered view contains objects that match the given filter and that object’s parent
hierarchy too.

useDescendants(get and set)

Declaration
bool useDescendants (ViewDef viewDef)

void useDescendants (ViewDef viewDef,
bool save)

Operation

The first form returns t rue if the option to save the advanced filter option for showing descendants is currently set.
Otherwise, returns false.

The second form sets the option to save the advanced filter option for showing descendants.

If the option to show descendants is set, a filtered view contains objects that match the given filter and that object’s child
hierarchy too.

useCurrent(get and set)

Declaration
bool useCurrent (ViewDef viewDef)

void useCurrent (ViewDef viewDef,
bool save)

Operation

The first form returns t rue if the option to save information about the currently selected object is currently set.
Otherwise, returns false.

The second form sets the option to save information about the currently selected object.

useSelection(get and set)

Declaration
bool useSelection (ViewDef viewDef)

void useSelection (ViewDef viewDef,
bool save)

DXL Reference Manual

684

Operation

The first form returns t rue if the option to save information about currently selected objects is currently set. Otherwise,

returns false.

The second form sets the option to save information about currently selected objects.

useColumns(get and set)

Declaration
bool useColumns (ViewDef viewDef)

void useColumns (ViewDef viewDef,
bool save)

Operation
The first form returns t rue if the option to save column information is currently set. Otherwise, returns false.

The second form sets the option to save column information.

useFilterTables(get and set)

Declaration

bool useFilterTables (ViewDef viewDef)

void useFilterTables (ViewDef viewDef,
bool save)

Operation

The first form returns true if the option to save the advanced filter option for hiding non-matching table cells is currently

set. Otherwise, returns false.

The second form sets the option to save the advanced filter option for hiding non-matching table cells.

useGraphicsColumn(get and set)

Declaration

bool useGraphicsColumn (ViewDef viewDef)

void useGraphicsColumn (ViewDef viewDef,
bool save)

Operation

The first form returns t rue if the option to save information about which column’s values are displayed in the object
boxes when in Graphics Mode is currently set. Otherwise, returns false.

The second form sets the option to save information about which column’s values are displayed in the object boxes when in
Graphics Mode.

DXL Reference Manual

685

useShowExplorer(get and set)

Declaration

bool useShowExplorer (ViewDef viewDef)

void useShowExplorer (ViewDef viewDef,
bool save)

Operation

The first form returns t rue if the option to save the Module Explorer setting (shown on the View menu) is currently set.

Otherwise, returns false.

The second form sets the option to save the Module Explorer setting.

useGraphics(get and set)

Declaration
bool useGraphics (ViewDef viewDef)
void useGraphics (ViewDef viewDef,

bool save)

Operation

The first form returns t rue if the option to save the Graphics Mode setting (shown on the View menu) is currently set.

Otherwise, returns false.

The second form sets the option to save the Graphics Mode setting.

useOutlining(get and set)

Declaration
bool useOutlining (ViewDef viewDef)

void useOutlining(ViewDef viewDef,
bool save)

Operation

The first form returns true if the option to save the Outline setting (shown on the View menu) is currently set.

Otherwise, returns false.

The second form sets the option to save the Outline setting.

DXL Reference Manual

686

useCompression(get and set)

Declaration

bool useCompression (ViewDef viewDef)

void useCompression (ViewDef viewDef,
bool save)

Operation

The first form returns t rue if the option to save the Compress setting (shown on the View menu) is currently set.

Otherwise, returns false.

The second form sets the option to save the Compress setting.

uselLevel(get and set)

Declaration

bool uselevel (ViewDef viewDef)

voild uselLevel (ViewDef viewDef,
bool save)

Operation

The first form returns true if the option to save the Level setting (shown on the View menu) is currently set. Otherwise,

returns false.

The second form sets the option to save the Level setting.

useSorting(get and set)

Declaration
bool useSorting(ViewDef viewDef)

void useSorting (ViewDef viewDef,
bool save)

Operation

The first form returns true if the option to save the Sort setting (shown on the View > Show menu) is currently set.

Otherwise, returns false.

The second form sets the option to save the Sort setting.

DXL Reference Manual

687

useFiltering(get and set)

Declaration

bool useFiltering(ViewDef viewDef)

void useFiltering(ViewDef viewDef,
bool save)

Operation

The first form returns t rue if the option to save the Filter setting (shown on the View > Show menu) is currently set.

Otherwise, returns false.

The second form sets the option to save the Filter setting.

useShowDeleted(get and set)

Declaration
bool useShowDeleted (ViewDef viewDef)
void useShowDeleted (ViewDef viewDef,

bool save)

Operation

The first form returns true if the option to save the Deletions setting (shown on the View > Show menu) is currently

set. Otherwise, returns false.

The second form sets the option to save the Deletions setting.

useShowPictures(get and set)

Declaration
bool useShowPictures (ViewDef viewDef)

void useShowPictures (ViewDef viewDef,
bool save)

Operation

The first form returns true if the option to save the Pictures setting (shown on the View > Show menu) is currently set.

Otherwise, returns false.

The second form sets the option to save the Pictures setting.

DXL Reference Manual

688

useShowTables(get and set)

Declaration

bool useShowTables (ViewDef viewDef)

void useShowTables (ViewDef viewDef,
bool save)

Operation

The first form returns true if the option to save the Table Cells setting (shown on the View > Show menu) is currently
set. Otherwise, returns false.

The second form sets the option to save the Table Cells setting.

useShowLinkIndicators(get and set)

Declaration

bool useShowLinkIndicators (ViewDef viewDef)

void useShowLinkIndicators (ViewDef viewDef,
bool save)

Operation

The first form returns t rue if the option to save the Link Arrows setting (shown on the View > Show menu) is currently
set. Otherwise, returns false.

The second form sets the option to save the Link Arrows setting.

useShowLinks(get and set)

Declaration

bool useShowLinks (ViewDef viewDef)

void useShowLinks (ViewDef viewDef,
bool save)

Operation

The first form returns true if the option to save the Graphics Links setting (shown on the View > Show menu) is
cutrently set. Otherwise, returns false.

The second form sets the option to save the Graphics Links setting.

DXL Reference Manual

689

useTooltipColumn(get and set)

Declaration

bool useTooltipColumn (ViewDef viewDef)

void useTooltipColumn (ViewDef viewDef,
bool save)

Operation

The first form returns t rue if the option to save the Graphics Datatips setting (shown on the View > Show menu) is
currently set. Otherwise, returns false.

The second form sets the option to save the Graphics Datatips setting.

useWindows(get and set)

Declaration

bool useWindows (ViewDef viewDef)

void useWindows (ViewDef viewDef,
bool save)

Operation

The first form returns t rue if the option to save the current window size and position is currently set. Otherwise, returns

false.
The second form sets the option to save the current window size and position.

If a view is saved in batch mode with the option to save the current window size and position set to t rue, the view will be
saved with a module window that is not visible.

useAutolndentation

Declaration
void useAutoIndentation (ViewDef vDef, Bool)
bool useAutoIndentation (ViewDef vDef)

Operation

The first form sets the auto-indentation status of the supplied ViewDef (this equates to the setting of the “Indentation of
main column” check box on the advanced tab of the “Manage Views” dialog).

The second form returns the auto-indentation status of the supplied ViewDef.

Example

ViewDef viewInfo = get(view “viewName”)

DXL Reference Manual

690

print useAutoIndentation (viewInfo)

Columns

This section defines functions and a for loop for building and manipulating Rational DOORS columns. These elements
use the data types Column and Justification.

Note: The data type Justification is used for constants specifying text alignment.

column

Declaration

Column column ([Module m,]
int n)

Operation

Returns a handle on the nth column, starting from 0, in module m, or if mis omitted, in the current module. The handle is
used in other column functions.

Column alignment constants

The following constants of type Justification are defined for reading or setting the alignment of text in a column.

left aligns text to the left column
right aligns text to the right column
center centers text

centre centers text

full justifies text

attribute(in column)

Declaration

void attribute (Column c,
string attr)

Operation

Makes column c display the attribute at tr.

DXL Reference Manual

691

attrName

Declaration

string attrName (Column c)

Operation

Returns the name of the attribute displayed in a column; this is the value that the attribute (in column) function
sets. Returns null if the column does not display an attribute.

Example

This example prints out the names of all the attributes displayed in the current view:
Module m = current

Column c

for ¢ in m do {
print "<" (attrName c) ">\n"

color(get)

Declaration

string colo[u]r (Column c¢)

Operation

Returns the name of the attribute used for coloring a column, or null if none is set.

color(set)

Declaration

void colo[u]r (Column c,
string attrName)

Operation

Uses color on column ¢ as specified by the attribute named at t rName.

backgroundColor(get)

Declaration

string backgroundColo[u]r (Column c)

DXL Reference Manual

692

Operation

Returns the name of the attribute that is used to color the background in column ¢, or null if none is set.

backgroundColor(set)

Declaration

void backgroundColo[u]r (Column c, string enumAttrName)

Operation

Sets the attribute enumAt t rName as the background color for column c.
Example

Column ¢ = column (1)

backgroundColor (c, “enumAttrName”)

Sets the background color for column ¢ to use attribute enumAt t rName.

Column c¢ = column (1)

backgroundColor (c, “”)

Removes any previously configured background color attribute for column c.

delete(column)

Declaration

void delete (Column c)

Operation

Deletes column c. This command should not be used inside the column for
use the following example.

Example

int n = 0 // number of existing columns
int i // column index

Column c

for ¢ in current Module do
n++ // count the columns

// delete n column Os

for 1 in 1:n do {
delete column 0

DXL Reference Manual

. .do loop. If every column must be deleted,

dxl(get)

Declaration

string dxl1 (Column c)

Operation
Returns the DXL code set for DXL column c.

Example
Column col

for col in current Module do {
string att = attrName (col)

if (null att) {

if (main(col)) {
print "main\t"
} else {

print dxl(col) "\t"
}
} else {
print att "\t"

dxl(set)

Declaration

void dx1 (Column c,
string dxlCode)

Operation
Sets the DXL code to use in a DXL column. This is equivalent to the menu option Column > Edit > dxl.

If you wish to use a Windows-style file separator (\), you must duplicate it (\\) so that DXL does not interpret it as a meta
character in the string. Because Rational DOORS automatically converts UNIX-style file separators (/) for Windows, it is
usually more convenient to use them.

Example
dxl (column 0, "display obj.\"Object Heading\"")

dx1 (column 1, "#include <layout/trace.dx1>")

DXL Reference Manual

693

694 ‘

graphics(get)

Declaration

bool graphics (Column c)

Operation

Returns true when ¢ is the column nominated for viewing in a graphics display; otherwise, returns false.

graphics(set)

Declaration

void graphics (Column c)

Operation

Nominates the column for viewing in a graphics display.

info(get)

Declaration
bool info (Column c)
Operation

Returns t rue when cis the column nominated for use by the datatips mechanism in Graphics mode; otherwise, returns

false.

info(set)

Declaration

void info (Column c¢)

Operation

Nominates the column for use by the datatips mechanism in Graphics mode.

insert(column in module)

Declaration

Column insert (Column c)

DXL Reference Manual

695

Operation

Inserts a column, pushing subsequent columns one right. Returns a handle to the new column. If a column is inserted at a
new position, it is important to initialize the width of the new column (see the width (get) function).

Example
This example inserts a new column 1 as a copy of the old column 1, if present:

insert (column 1)

justify(get alignment)

Declaration
string justify(Column c)

Justification Jjustify(Column c)

Operation
The first form returns a string version of the type Justification constants.

The second form returns the type Justification constant for the specified column c. The constants are defined in
“Column alignment constants,” on page 690.

justify(set alignment)

Declaration

void justify(Column c,
Justification 7)

Operation

Sets the alighment or justification of column c to the Justification constant j, which can be one of the constants
defined in “Column alignment constants,” on page 690.

Example

justify(column 1, center)

main(get)

Declaration

bool main (Column c)

Operation

Returns true if the column is the main text column (with the appearance of the second column in the standard view).

DXL Reference Manual

696 ‘

main(set)

Declaration

void main (Column c¢)

Operation

Makes column ¢ the main text column (with the appearance of the second column in the standard view).

link(get)

Declaration

bool link (Column c)

Operation

Returns true if column ¢ is a link indicator column.

link(set)

Declaration

void link (Column c¢)

Operation

Makes column ¢ a link indicator column.

changebar(get)

Declaration

bool changebar (Column c)

Operation

Returns true if column c is a change bar column.

changebar(set)

Declaration

void changebar (Column c)

Operation

Makes column c a change bar column.

DXL Reference Manual

697

text(column)

Declaration

string text (Column c,
Object o)

Operation
Returns the text contained in column ¢ for object o.

When c is the main column, this function returns the empty string. You must assemble the elements of the main column
from the "Object Heading" and "Object Text" attributes, and the number function. You can use the
main (get) function to check for this condition.

Example
Object o
Column c

for o in current Module do {
for ¢ in current Module do {
if (main c) {
print o."Object Heading”™ "\n\n"
print o."Object Text" "\n\n"
} else {
print text(c, o) "\n"

title(get)

Declaration

string title (Column c)

Operation

Returns the string that is the title of column c.

title(set)

Declaration

void title (Column c,
string heading)

Operation

Sets the title of column c¢ to the string heading.

DXL Reference Manual

698 ‘

width(get)

Declaration

int width (Column c¢)

Operation

Returns the number of screen pixels used by column c.

Example
Column c

for ¢ in current Module do {
print (title c¢) "™ " (justify c) " "
print (width c) "\n"

width(set)

Declaration

void width (Column c,
int w)

Operation

Sets the width of column ¢ to w in pixels.

currentColumn(get)

Declaration

Column currentColumn (void)

Operation
Gets the current column for this DXL context. If the DXL is not layout DXL then this will return NULL.

Example
string name = ?attributeName?;

Column c¢ = currentColumn ()
if (null c)

{
// Attribute DXL

DXL Reference Manual

699

obj.attrDXLName = name;

else

// Layout DXL

display (name) ;

for columns in module

Syntax

for ¢ in m do {

where:
c is a variable of type Column
m is a module of type Module
Operation

Assigns the variable ¢ to be each successive column in the current view in module m. The command delete (Column)
should not be used inside the body of the loop.

Example
Column c

for ¢ in current Module do print (title c) "\n"

Scrolling functions

This section gives the syntax for scrolling functions, which control view scrolling. The functions use internal data types, so
declarations are not stated.

scroll

Syntax

scroll (position)

DXL Reference Manual

700

Operation

Scrolls to the position determined by the supporting functions: top, bottom, to, up, down, and page. The syntax for
these functions is as follows:

top (Module m)

bottom (Module m)
to({toplbottom} (Module m))
to (Object o)

up (Module m)

down (Module m)

page ({up|down} (Module m))

Example

scroll up current Module
scroll down current Module
scroll page up current Module

scroll page down current Module

Layout DXL

This section describes the DXL features unique to layout DXL. Layout DXL is used to populate a column within a Rational
DOORS view, typically to construct traceability or impact analysis reports.

The Insert Column dialog box in the Rational DOORS user interface has a Layout DXL option which pops up a DXL
Library window, which enables you to browse several layout DXL programs; they can also be found in
SDOORSHOME/1ib/dx1/layout.

For information on how to check the validity of your DXL code, see the checkDXL function.

Layout context

Layout DXL programs run in a context where the variable obj is pre-declared. You can have a column that contains DXL
code. The code calculates the value to display for each object. The current object to calculate is referred to as obj.

display

Declaration
void display(string line)

void display (attrRef)

DXL Reference Manual

701

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1).(string attrName)

Operation
Adds a new line to the column. The new line contains the specified string or the value of the referenced attribute.
If you pass a referenced attribute and the value contains rich text markup, this function interprets the rich text markup.

If you pass a string that contains rich text markup, this function does not interpret the rich text markup; it passes the rich
text tags as text characters. Use the displayRich function if you want the rich text markup to be interpreted.

For more information, see “Rich text,” on page 835.

Example

This example takes two attribute values from the current object obj and calculates a derived value for display. The empty
string is needed to convert the area’s int value into a string:

// calculate area of obj

int length = obj."Length"

int width = obj."Width"

display (length*width) "

This example adds another line to the column with the attribute "Object Text™:
display obj."Object Text"

This example is for a module where column A is text and column B is the following DXT.:
string s=obj."A"™ ""

display "<"s s">"

For values of A of hello and bye, you see:
Column: ID A (text) B (DXL)
Values: 1 hello <hellohello>

2 bye <byebye>

displayRich

Declaration
void displayRich(string richTextString)

Operation
Adds a new line containing the specified string to the column followed by a trailing blank line.

This function operates in the same way as the display function, except that it interprets any rich text markup in the
specified string. For more information, see “Rich text,” on page 835.

DXL Reference Manual

702

Example
displayRich richText obj."Object Text"

displayRichWithColo[u]r

Declaration
void displayRichWithColo[ulr(string richTextString)

Operation

Like the existing displayRich for displaying text in layout dxl, but respects the text color specified in the string argument,
which must be RTF (not plain text).

Example

bool fullRTF=true
Buffer bl=create
Buffer b2=create

Buffer res=create

bl=obj."Specification"

b2=0bj."Proposed specification"

diff(res, bl, b2, fullRTF)

displayRichWithColour stringOf (res)

getCanvas

Declaration

DBE getCanvas ()

Operation

Returns a handle to a virtual canvas with which normal canvas drawing functions can be used. The canvas is in the Rational
DOORS formal module display in a column driven by layout DXIL.. When using this perm, checks should be made for the
perm returning a null value, to prevent DXL errors.

hasPicture/exportPicture

Declaration

bool hasPicture (Column c)

DXL Reference Manual

703

string exportPicture (Column ¢, Object o,string filename, int format)

Operation

The two perms here are for use along with the htmlText perm. After calling htmlText on a column, hasPicture
will tell you whether a picture of some layout DXL has been stored with the column. You can then call exportPicture
to export the picture.

isFirstObjectinDXLSet(Object)

Declaration
bool isFirstObjectInDXLSet (Object o)

Operation
This perm has been added for use only within layout DXL.
Exposes to DXL the processing of objects during various stages of the execution of layout DXL.

Layout DXL processes sets of objects at a time. When layout DXL is running against an object, that object might be in a set
of objects that will be processed. For example, during the repaint of a formal module display, the set is those objects that
will be drawn to the display.

This perm returns t rue in the following cases:
* Layout DXL is not executing
* Layout DXL is executing against a set of objects, and Object is the first to be processed in that set

An object may be simultancously the first such object in a set and also the last such object in a set; the set might contain a
single object.

This perm, and its partner, isLastObjectInDXLSet (), allow layout DXL to perform certain actions only at the start
or end of a particular set processing. This can support the DXL programmer to write more efficient layout DXL.

isLastObjectinDXLSet(Object)

Declaration
bool isLastObjectInDXLSet (Object o)

Operation
This perm has been added for use only within layout DXL.
Exposes to DXL the processing of objects during various stages of the execution of layout DXL.

Layout DXL processes sets of objects at a time. When layout DXL is running against an object, that object might be in a set
of objects that will be processed. For example, during the repaint of a formal module display, the set is those objects that
will be drawn to the display.

This perm returns true in the following cases:
e layout DXL is not executing

* layout DXL is executing against a set of objects, and Object is the last to be processed in that set

DXL Reference Manual

704

An object may be simultaneously the first such object in a set and also the last such object in a set; the set might be
singleton.

This perm, and its partner, i sFirstObjectInDXLSet (), allow layout DXL to perform certain actions only at the
start or end of a particular set processing. This can support the DXL programmer to write more efficient layout DXL.

Example
Insert a Layout DXL column containing the following:
if (isFirstObjectInDXLSet (obj))
{
display "This is the first object in the module window."
}
else if (isLastObjectInDXLSet (obj))
{

display "This is the last object in the module window."

else

// do nothing
}

You can then click your mouse on the bottom right hand corner of the module window and resize to see the perms in
operation.

setRefreshDelta

Declaration

void setRefreshDelta (Column ¢, int delta)

Operation

Identifies the column in the view that contains the Layout DXL function. This function also specifies the refresh interval in
seconds for the displayed values.

Example

In this example, the Layout DXL column is the third column in the view. The column numbering begins with 0, so the
value of the third column is 2.

Column c
c = column(2) //third column in view

setRefreshDelta(c, 100)

DXL Reference Manual

705

getRefreshDelta

Declaration

in getRefreshDelta (Column c)

Operation

Identifies the column in the view that contains the Layout DXL function. This function returns the refresh interval in

seconds for the displayed values.

Example

In this example, the Layout DXL column is the third column in the view. The column numbering begins with 0, so the
value of the third column is 2.

Column c

c = column(2) //third column in view
int refreshrate

refreshrate = getRefreshDelta (c)

print refreshrate "\n"

setManualRefresh

Declaration

void setManualRefresh (Column ¢, bool manualRefresh)

Operation

If manualRefresh is set to true, then the layout DXL column will only refresh on F5 and at most every n seconds depending
on the refresh interval (see setRefreshDelta). Editing the layout DXL properties will still cause a refresh. If manualRefresh is
set to false, then user actions such as scroll or select object will cause a refresh.

isManualRefresh

Declaration

bool isManualRefresh (Column c)

Operation

Returns true if a manual refresh is enabled for that layout DXI. column.

DXL Reference Manual

706

DXL Reference Manual

Chapter 27
Partitions

This chapter provides information on Rational DOORS partitions.
* Partition concepts

* Partition definition management

e Partition definition contents

e Partition management

¢ Partition information

e Partition access

Partition concepts

Any partition operation can be performed through DXI.. These operations fall into the following categories:
* Management of partition definitions
* Management of partitions

* Exporting a pattition from the home database

* Accepting a partition in the away database

* Adding data to a partition in the away database

* Returning a partition from the away database

* Rejoining a partition to the home database

Partition definition management

A partition definition describes the information that is to be included in partition. This is a list of modules, called partition
modules, and, for each partition module, a list of attributes, views, and (for link modules) linksets to be included. A partition
module is really just a placeholder for the real module, but it is associated with a real module. This manual refers to it as if it
were the regular module.

In a partition definition, a set of maximum access rights is associated with each partition module, partition attribute, and
partition view. These maximum access rights determine what users at the away database can do when the partition
definition is used to create a partition.

DXL Reference Manual

707

708 ‘

create(partition definition)

Declaration

PartitionDefinition create (Project p,
string name,
string desc)

Operation

Creates a partition definition in project p with name name and description desc. The partition definition created must be

saved before use.

delete(partition definition)

Declaration

string delete (PartitionDefinition pd)

Operation
Removes the partition definition pd from its project.

If successful, returns a null string; otherwise returns a string containing an error message.

dispose(partition definition)

Declaration

string dispose (PartitionDefinition pd)

Operation

Frees up the memory used by DXL to store the partition definition pd. It does not affect the partition definition as stored
in the database.

If successful, returns a null string; otherwise returns a string containing an error message.

copy(partition definition)

Declaration

string copy(PartitionDefinition pd,
string name,
string desc)

Operation
Creates a copy of a pattition definition with the name name, and the description desc.

If successful, returns a null string; otherwise returns a string containing an error message.

DXL Reference Manual

709

rename(partition definition)

Declaration

string rename (PartitionDefinition pd,
string newName)

Operation
Changes the name of a partition definition to newName.

If successful, returns a null string; otherwise returns a string containing an error message.

load(partition definition)

Declaration

PartitionDefinition load(Project p,
string name)

Operation

Loads pattition definition name in project p. This is used to obtain a handle for editing with the addModule,
addLinkModule, and removeModule functions, but not the addAwayModule, addAwayLinkModule

functions.

loadInPartitionDef

Declaration

PartitionDefinition

loadInPartitionDef (Project p, string name)
Operation

Loads pattition definition associated with the partition name, which is a partition that has been accepted into project p.
This is used in the away database to add data to a partition with the addAwayModule, addAwayLinkModule
functions.

save(partition definition)

Declaration

string save (PartitionDefinition pd)

Operation
Saves a partition definition in the home database.

If successful, returns a null string; otherwise returns a string containing an error message.

DXL Reference Manual

710

saveModified(partition definition)

Declaration

string saveModified (Project p,
string inPartname
PartitionDefinition pd)

Operation

Saves a partition definition in the away database. The partition definition is associated with the partition inPartname,
which has been accepted into the away database.

If successful, returns a null string; otherwise returns a string containing an error message.
Example
pd = loadInPartitionDef (project, "N")

(...)
saveModified (project, "N", pd)

setDescription(partition definition)

Declaration

string setDescription(PartitionDefinition pd,
string newDesc)

Operation
Changes the description of a partition definition to newDesc.

If successful, returns a null string; otherwise returns a string containing an error message.

Partition definition contents

This section describes functions and for loops concerned with the contents of a pattition definition.

addModule, addLinkModule

Declaration

string add[Link]Module (PartitionDefinition pd,
string modName)

DXL Reference Manual

711

Operation

Adds module modName to the pattition definition pd. The module name must be specified with a full path name relative
to the project (beginning with the project name).

If successful, returns a null string; otherwise returns a string containing an error message.
Use the function addModule for formal modules; use addLinkModule for link modules.

These perms will add the module to the partition definition with access rights set to RMCD by default.

addAwayModule, addAwayLinkModule

Declaration

string
addAway[Link]Module (PartitionDefinition pd,
string modName)

Operation

Adds module modName to the partition definition pd in the away database. This means that pd must be obtained from the
loadInPartitionDef function. The module name must be specified relative to the folder in the away database
created when the partition was accepted.

If successful, returns a null string; otherwise returns a string containing an error message.
Use the function addAwayModule for formal modules; use addAwayLinkModule for link modules.

This marks the module as being partitioned in. When the partition is finally returned, the module is returned with the other
partitioned-in data.

Example

If you accept a partition called N into a folder B, a folder called N is created inside B. If you then create a module A in
folder N, you can add it to the partition definition with:

pd = loadInPartitionDef (project, "N")

addAwayModule (pd, "A")

findModule

Declaration

PartitionModule
findModule (PartitionDefinition pd,
string modName)

Operation

Returns a handle to the description of the module in the partition definition pd. In the home database, the modName
argument must be an absolute path from the containing project (not including the project name). In the away database, the
modName argument must be a path relative to the partition folder.

DXL Reference Manual

712

The handle is used with the findLinkset, addLinkset, addAwayLinkset, and addView, addAwayView
functions to edit the information, including linksets, associated with this module in the partition definition.

findLinkset

Declaration

PartitionLinkset findLinkset (PartitionModule pm,
string source,
string target)

Operation

Returns a handle for the linkset between source and target in the partitioned link module pm. The names specified for
both the source and target modules must be absolute paths from the containing project (not including the project name).

findAttribute

Declaration

PartitionAttribute
findAttribute (PartitionModule pm,
string attrName)

Operation
Returns a handle for the attribute called att rName in the partition module pm.

The handle can be used with dot notation to extract the name of the attribute.

findView

Declaration

PartitionView findView (PartitionModule pm,
string viewName)

Operation
Returns a handle for the view called viiewName in the partition module pm.

The handle can be used with dot notation to extract the name of the view.

addAttribute, addAwayAttribute

Declaration

string add[Away]Attribute (PartitionModule pm,
string attrName)

DXL Reference Manual

713

Operation

Specifies that attribute at t rName is to be included with the information in partition module pm. Use the function
addAwayAttribute when adding information in the away database.

If successful, returns a null string; otherwise returns a string containing an error message.

addLinkset, addAwayLinkset

Declaration
string add[Away]Linkset (PartitionModule pm,
string srcName,
string trgName)
Operation

Adds a linkset to a partition definition containing pm, which must be a link module in the partition definition. The linkset
has source srcName and target t rgName in module pm.

Use the addAwayLinkset function when adding information in the away database.

For addLinkset, the names specified for both the source and target modules must be absolute paths from the
containing project (not including the project name).

For addAwayLinkset the module name must be specified relative to the folder in the away database created when the
partition was accepted.

If successful, returns a null string; otherwise returns a string containing an error message.

addView, addAwayView

Declaration

string add[Away]View (PartitionModule pm,
string viewName)

Operation

Specifies that view viewName is to be included with the information in partition module pm, which must describe a
formal module. Use the function addAwayView when adding information in the away database.

If successful, returns a null string; otherwise returns a string containing an error message.

removeModule

Declaration

string removeModule (PartitionDefinition pd,
string modName)

DXL Reference Manual

714

Operation
Removes a pattition module from a partition definition.

If successful, returns a null string; otherwise returns a string containing an error message.

removeAttribute

Declaration

string removeAttribute (PartitionModule pm,
string attrName)

Operation

Removes attribute at t rName from the information to be included with partition module pm. You cannot remove
information from a partition definition in the away database.

If successful, returns a null string; otherwise returns a string containing an error message.

removeLinkset

Declaration

PartitionLinkset

removelLinkset (PartitionModule pm,
string source,
string target)

Operation

Removes a particular linkset from the information to be included with partition module pm, which must be a link module.
The names specified for both the source and target modules must be absolute paths from the containing project (not

including the project name).

removeView

Declaration

string removeView (PartitionModule pm,
string viewName)

Operation

Removes view viewName from the information to be included with partition module pm. You cannot remove
information from a partition definition in the away database.

If successful, returns a null string; otherwise returns a string containing an error message.

DXL Reference Manual

715

allowsAccess

Declaration

bool

allowsAccess ({PartitionAttribute pal
PartitionModule pm|
PartitionView pv},
PartitionPermission pp)

Operation

Returns true if the data is to be included in the partition with the maximum access rights pp. Otherwise, returns false.

setAccess

Declaration

void setAccess ({PartitionAttribute pa|
PartitionModule pm|
PartitionView pv},
PartitionPermission pp)

Operation

Sets the maximum access rights to the data in the away database to be pp.

for partition module in partition definition

Syntax

for partModule in partDefinition do {

}

where:
partModule is a variable of type PartitionModule
partDefinition is a variable of type PartitionDefinition
Operation

Assigns partModule to be each successive module within partDefinition.

DXL Reference Manual

716

for partition attribute in partition module

Syntax

for partAttr in partModule do {

}

where:

partAttr is a vatiable of type PartitionAttribute

partModule is a variable of type PartitionModule

Operation

Assigns partAttr to be each successive attribute within partModule.

for partition view in partition module

Syntax

for partView in partModule do {

}

where:
partView is a variable of type PartitionView

partModule is a variable of type PartitionModule

Operation

Assigns partView to be each successive view within partModule.

Partition management

This section describes the functions for exporting, accepting, returning, and rejoining partitions.

DXL Reference Manual

77

apply(partition definition)

Declaration

string apply(Project p,
string partDefName,
string partName,
string partDesc,
string filename[, bool overwrite])

Operation

Applies partition definition partDefName to create a partition with name partName and description partDesc. The
partition is written to file £ilename, which should have a file type of . par. Note that the same partition definition can
be used on different occasions to create partitions with different names. If the boolean argument overwri te is specified
as true, and the specified export file already exists, it will be overwritten. If the argument is false, or is not given, then
the perm will not overwrite the file, but will return an error message.

open(partition file)

Declaration

PartitionFile open(string filename)

Operation
Creates a pattition file and returns a handle. The file type must be . par.

The handle can be used with dot notation to extract any of the properties available from a variable of type
PartitionFile.

Example
This example checks that the file is a valid partition file:

PartitionFile pf = open("partition.par")

close(partition file)

Declaration

string close (PartitionFile pf)

Operation
Closes a partition file and releases the handle.

If successful, returns a null string; otherwise returns a string containing an error message.

DXL Reference Manual

718

acceptReport

Declaration

string acceptReport (PartitionFile pf,
string foldername)

Operation

Returns a string containing a report on information that would be produced if the pattition in pf is accepted into folder
foldername. This includes the names of the modules, attributes, and views which would be created.

acceptPartition

Declaration
string acceptPartition (Project p,
PartitionFile pf,
folder foldername)
Operation
Accepts the partition in pf into folder foldername in project p.

If successful, returns a null string; otherwise returns a string containing an error message.

returnPartition

Declaration

string returnPartition (Project p,
string partName,
string returnDesc,
string partFileName,
bool isFinal,
bool deleteData[, bool overwrite])

Operation

Returns the accepted partition with name partName, using the description returnDesc. This creates file
partFileName.

If isFinalis true, the return is a final return: the data cannot be returned again. If isFinalis false, the returnis a
synchronize operation, and the value of deleteData is ignored.

If deleteDatais true, the return operation deletes all accepted data. If deleteData is false, the return operation
removes partition locks on the data, so that it remains in the database but is no longer partitioned in.

If the argument overwrite is specified as true, and the specified file already exists, it will be overwritten. If the
argument is false, or is not given, then the perm will not overwrite the file, but will return an error message.

If successful, returns a null string; otherwise returns a string containing an error message.

DXL Reference Manual

719

rejoinReport

Declaration

string rejoinReport (PartitionFile pf,
string pathname)

Operation

Returns a string containing a report on information that would be produced if the partition in pf is rejoined. This includes
the names of the modules, attributes, and views which would be created. The pathname argument is reserved for future

enhancements; currently, it is ignored.

rejoinPartition

Declaration

string rejoinPartition (Project p,
PartitionFile pf)

Operation
Rejoins the partition in pf into folder foldername in project p.

If successful, returns a null string; otherwise returns a string containing an error message.

removePartition

Declaration

string removePartition (Project p,
string partName)

Operation

Recovers the information exported in partName, which must be the name of a partition exported from project p. This
removes its partitioned out status, which enables it to be edited. Once removed, the partition can never be rejoined.

If successful, returns a null string; otherwise returns a string containing an error message.

Partition information

This section describes the functions and properties that allow access to the attributes of partitions and partition definitions.
Some functions use the data type PartitionPermission, which has the same range of values as Permission, but
applies only to data in partition definitions. This is the data type that confers the maximum access rights for users at the
away database, if the partition definition is used to create a partition.

DXL Reference Manual

720

Partition properties

Partition properties are defined for use with the . (dot) operator and a partition handle to extract information from a
partition or partition definition, as shown in the following syntax:

variable.property
where:
variable is a vatiable of type PartitionDefinition,
PartitionModule, PartitionAttribute,

PartitionView, PartitionFile, InPartition,or
OutPartition.

The properties available vary according to the type being examined.

The types PartitionDefinition, PartitionModule, PartitionAttribute,and PartitionView
refer to information in a partition definition.

You can obtain an object of type Using
PartitionDefinition load (partition definition) function
or

for partition definition in project loop.

PartitionModule findModule function
or

for partition module in partition definition
loop

PartitionAttribute findAttribute function
or

for partition attribute in partition module
loop

PartitionView findView function
or

for partition view in partition module loop

PartitionFile open (partition file) function

An object of type PartitionFile is created after a user ata
home database has exported a partition and created a partition file.

OutPartition for out-partition in project loop
An object of type OutPartition is created after a user at a home
database has exported a partition definition. You can only access a
type OutPartition using this loop.

DXL Reference Manual

721

You can obtain an object of type Using

InPartition for in-partition in project loop

An object of type InPartition is created after a user at a home
database has exported a partition definition. You can only access a
type InPartition using this loop.

Partition definition properties

After a user at the home database has created a partition definition you can use these properties on a vatiable of type
PartitionDefinition.

String property Extracts
description Description of partition definition
name Name of partition definition

Partition module properties

After a user at the home database has created a partition definition you can use this property on a variable of type

PartitionModule.
String property Extracts
name Name of partition module

Partition attribute properties

After a user at the home database has created a partition definition you can use this property on a variable of type

PartitionAttribute.
String property Extracts
name Name of partition attribute

Partition view properties

After a user at the home database has created a partition definition you can use this property on a variable of type

PartitionView.
String property Extracts
name Name of partition view

DXL Reference Manual

722

Partition file properties

After a user at the home database has exported a partition and created a partition file, or after a user at the away database
has synchronized or returned a partition, you can use these properties on a variable of type PartitionFile.

String property Extracts

author The user who created the partition file

date Date the partition file was created

definitionName Name of partition definition

description Description of partition contained in file

name Name of partition contained in file

subtype If the type is Initial, returns "ReadOnly" if the file contains a

partition in which all the data is read-only. Otherwise, returns
"Writeable".

If the type is Final, returns "Final" if the file contains a partition

>

that has been returned for the last time (not synchronized). Otherwise
if the file is a synchronize file, returns "Intermediate™.

timestamp Timestamp of partition file

type Returns "Initial" if the file contains a pattition that is yet to be
imported into the away database.
Returns "Final" if the file contains a partition that has been returned

or synchronized from the away database, and which should be
rejoined or synchronized at the home database.

Out-partition properties

After a partition has been exported, the user at the home database can use these properties on a variable of type

OutPartition.
String property Extracts
author The user who exported the partition
applyDate Date the partition was exported
definitionName Name of partition definition
description Description of partition
folderName Folder that contains all of the modules included in the partition

definition

DXL Reference Manual

723

String property Extracts

name Name of partition
rejoinedBy User who rejoined the partition
rejoinedDate Date the partition was rejoined

In-partition properties

After a partition has been imported, the user at the away database can use these properties on a variable of type

InPartition.
String property Extracts
acceptDate Date the partition was imported to the away database
applyDate Date the partition was exported from the home database
author The user who created the partition file
definitionName Name of partition definition
description Description of partition
folderName Folder the partition was accepted into
name Name of partition
returnedBy User who returned the partition
returnedDate Date the partition was returned
type If the partition contains writable data, returns "Writeable";

otherwise, returns "ReadOnly"

for in-partition in project

Syntax

for inPartition in project do {

}

where:
inPartition is a variable of type InPartition
project is a vatiable of type Project

DXL Reference Manual

724

Operation

Assigns outPartition to be each successive imported partition record in the specified project. This is primarily for use
in the away database.

for out-partition in project

Syntax
for outPartition in project do {
}
where:
outPartition is a vatiable of type OutPartition
project is a vatiable of type Project
Operation

Assigns outPartition to be each successive exported partition record in the specified project. This is primarily for use
in the home database.

for partition definition in project

Syntax

for partDefinition in project do {

}

where:
partDefinition is a variable of type PartitionDefinition
project is a variable of type Project

Operation

Assigns partitionDefinition to be each successive partition definition within the specified project.

Partition access

This section describes the functions and properties that manage the partition and rejoin access rights.

DXL Reference Manual

725

isPartitionedOut, isPartitionedOutDef, isPartitionedOutVal

Declaration

string

isPartitionedOut ({Item i|Folder f|Project p]
Module m|Object o|View v},
bool &result)

string isPartitionedOut (AttrType at,
bool &result)

string isPartitionedOutDef (AttrDef ad,
bool &result)

string isPartitionedOutVal (AttrDef ad,
bool &result)
Operation

If the current user has read access to the entity identified by the argument, sets result to indicate whether the entity is
pattitioned out, and returns a null string. If the current user does not have read access, returns an error message.

getPartitionMask, getPartitionMaskDef, getPartitionMaskVal

Declaration

string
getPartitionMask ({Item i|Folder f|Project p|
Module m|Object o|View v},
Permission &p)

string getPartitionMask (AttrType at,
Permission &p)

string getPartitionMaskDef (AttrDef ad,
Permission é&p)

string getPartitionMaskVal (AttrDef ad,
Permission &p)

Operation

This perm should only be used in the away database.

If the current user has read access to the entity identified by the argument, sets p to a mask of the entity’s permissions, and
returns a null string. The mask describes the maximum access allowed to users in the away database. If the current user does

not have read access, returns an error message.

If the data is pattitioned in, the mask passed back is a bitwise OR of read, create, modify, and delete, access
rights. If the data is not partitioned in, the mask is null.

DXL Reference Manual

726

DXL Reference Manual

727

Chapter 28

Requirements Interchange Format (RIF)

This chapter describes features that operate on Rational DOORS Requirements Interchange Format (RIF):

e RIF export
e RIF import
e RIFID

* Merge

¢ RIF definition

e Examples

RIF export

exportType

Declaration

void initRIFExport (ExportType)

Operation

Sets the export type to be either RIF or ReqIF. Call this before using the exportPackage method.
example

initRIFExport (exportRIF 1 2)// Sets the export to be RIF

initRIFExport (exportReqlIF)// Sets the export to be ReqlF

exportPackage

Declaration

string exportPackage (RifDefinition def, Stream RifFile, DB parent, bool& cancel)

Operation

Exports def to the XML file identified by Ri fFile. The stream must be have been opened for writing using “write
(filename, CP UTF8)”.1f parent is null then a non-interactive operation is performed. Otherwise, progress bars
will be displayed.

If an interactive export is performed, and is cancelled by the user, cancel will be set to true.

DXL Reference Manual

728 ‘

RIF import

importRifFile

Declaration

string importRifFile(string RifFilename, Folder parent, string targetName,
string targetDesc, string RifDefName, string RifDefDescription, DB parent)

Operation

Performs a non-interactive import of Ri fFileName, placing the imported modules in a new folder in the specified
parent. The new folder name and description are specified by targetName and targetDesc.

Riflmport

A RifImport is an object which contains information on a RIF import. These are created by import operations, and are
persisted in a list in the stored RifDefinition.

Properties are defined for use with the . (dot) operator and a RifImport handle to extract information from, or specify
information in an import record, as shown in the following syntax:

variable.property

where:
variable is a vatiable of type RifImport.
property is one of the properties.

The following tables list the Riflmport properties and the information they extract or specify:

bool property Extracts

mergeStarted Returns true when a merge operation is started.
mergeCompleted Returns true when the merge has been completed.
mergeRequired Returns true when an import is a valid candidate for merging.
mergeDisabled Returns true if the merge has been disabled due to lock removal.
User property Extracts

importedBy Returns the user who performed the import.

mergedBy Returns the user who preformed the merge.

DXL Reference Manual

729

Folder property Extracts

folder Returns the folder containing the imported data. On import, a DXL script is expected to
iterate through the contents of this folder, merging all items which have RIF IDs, and which
are persisted in this folder.

Date property Extracts

exportTime Returns the time the export was performed. Note that this is the timestamp derived from the
creationTime element of the header in the imported RIF package. Merges should be
performed in the order in which the data was exported, rather than the order in which the
packages were imported.

importTime Returns the date that the import folder was created.

mergeTime Returns the date that the merge of the import folder was completed, or started if it has not

yet been completed.

RIF ID

getRifID

Declaration

string getRifID(Object o)

Operation

Returns a string with the RIF ID for object o. If the object does not have a RIF ID, an empty string is returned.

getObjectByRIiflD

Declaration

Object getObjectByRifID (Module m, string s)

Operation

Returns the object within module m with a RIF ID of s. If the module does not contain an object with the input RIF ID,

null is returned.

DXL Reference Manual

730 ‘

Merge

rifMerge

Declaration
string rifMerge (RifImport mrgObj, DB parent)

Operation

Performs a non-interactive merge using the information in mrgObj.

RIF definition

RifDefinition

ARifDefinition is the object in which a package to be exported in RIF format is defined.

Properties are defined for use with the . (dot) operator and a RifDefinition handle to extract information from a
definition, as shown in the following syntax:

variable.property

where:
variable is a vatiable of type RifDefinition.
property is one of the following properties.

The following tables list the R1fDefinition properties and the information they extract or specify

String property Extracts
name The name of the definition.
description The description of the definition.

rifDefinitionIdentifer The unique ID of the RIF definition (this is shared between databases, unlike the
name and description).

boolean property Extracts
createdLocally Returns true if the definition was created in the local database, as opposed to being
imported.

DXL Reference Manual

731

boolean property Extracts

canModify Returns true if the correct user can modify the definition.

Project property Extracts

project The project which contains the definition.
RifModuleDefinition

A RifModuleDefinition isan object which contains the details of how a module should be exported, as part of a
RIF package.

Properties are defined for use with the . (dot) operator and RifModuleDefinition handle to extract information
from, a definition record, as shown in the following syntax:

variable.property

where:
variable is a vatiable of type RifModuleDefinition.
property is one of the properties below.

The following tables list the R1fModuleDefinition properties and the information they extract or specify:

String property Extracts

dataConfigView The name of the view used to define which data in the module will be included in the RIF
export.

ddcView The name of the view used to define what data can be edited when the exported RIF package

is imported into another database.

bool property Extracts

createdLocally Whether the module was added to the RifDefinition in the current database ot not.
ModuleVersion Extracts

property

moduleVersion The ModuleVersion reference for the given Ri fModuleDefinition.
Ddcmode property Extracts

ddcMode The type of access control used to define whether the module, or its contents, will be

editable in each database once it has been exported.

DXL Reference Manual

732

DdcMode constants

DdcMode constants define the type of access control used define whether a module, or its contents, will be editable in each
of the local and target database once the export has taken place. The following table details the possible values, and their

meanings.
Constant Meaning
ddcNone Module will be editable in both source and target databases.
ddcReadOnly Module will be editable in only the soutce database.
ddcByObject Selected objects in the module will be made read-only in the source database.
ddcByAttribute Selected attributes in the module will be made read-only in the source database.
ddcFullModule Module will not be editable.

for RifDefinition in Project

Syntax
for rifDef in proj do {

J
Operation

Assigns rifDef to be each successive RifDefinitionin Project proj.

for RifModuleDefinition in RifDefinition

Syntax

for rifModDef in rifDef so {

J
Operation

Assigns rifModDef to be each successive RifModuleDefinitionin RifDefinition rifDef.

DXL Reference Manual

for Riflmport in RifDefinition

Syntax

for rifImp in rifDef do {

}
Operation

Assigns rifImp to be each successive rifImportinRifDefinition rifDef.

Examples

Example 1

This example dumps all information about all RIF definitions in the current project to the screen. It then conditional

exports one of the packages.
RifDefinition rd

RifModuleDefinition rmd

Stream stm = write ("C:\\Public\\rifExport.xml", CP_UTF8)

string s = ""

bool b

Project p = current
Project p2
ModuleVersion mv

DB myDB = null
DdcMode ddcm

for rd in p do {

print rd.name "\n"

print rd.description "\n"

print rd.rifDefinitionIdentifier "\n"

if (rd.createdLocally) {

DXL Reference Manual

733

734

if

p2

print "Local DB\n"

(rd.canModify) {

print "May be modified by current user\n"

= rd.project

print fullName p "\n"

for rmd in rd do {

DXL Reference Manual

print "\nModules present in definition :\n"

mv = rmd.moduleVersion

print fullName mv "\t"

print rmd.dataConfigView "\t"

print rmd.ddcView "\t"

if (rmd.createdLocally) {

print "Home DB.\n"

ddcm = rmd.ddcMode

if (ddcm == ddcFullModule) {

print "Module will not be editable once definition is

exported.\n"

735

} else if (ddcm == ddcByObject) {

print "Selected objects will be locked in the local database once the
definition is exported.\n"

} else if (ddcm == ddcByAttribute) {

print "Selected attributes will be locked in the local database once
the definition is exported.\n"

} else if (ddcm == ddcReadOnly) {

print "Module will only be editable in the local database once
definition is exported.\n"

} else if (ddcm == ddcNone) {

print "Module will be fully editable in both local and target
databases when definition is exported.\n"

if (rd.name == "RifDefl") {

s = exportPackage (rd, stm, myDB, Db)

if (s 1= ")

print "Error occurred : " s "\n"

DXL Reference Manual

736

Example 2

This example dumps all information about all RIF imports in the current project. It then merges those imports where

required.
RifImport ri

RifDefinition rd

Project p = current
User importer, merger
string importerName, mergerName, res
Folder £
Skip dates = create
for rd in p do {
for ri in rd do {
rd = ri.definition
print rd.name "\n"
f = ri.folder
print "Located in : " fullName f
print "\n"
importer = ri.importedBy
importerName = importer.name

print "Imported by

print "Imported on

if (ri.mergeStarted &é&

print "Merge started on

DXL Reference Manual

" importerName "\n"

" ri.importTime "\n"

'ri.mergeCompleted) ({

" ri.mergeTime "\n"

} else if (ri.mergeCompleted)

print "Merge completed on

if (ri.mergeRequired) {

print "Merge required.\n"

{

" ri.mergeTime "\n"

res = rifMerge (ri, null)

print "Merging result " res "\n"
} else {

merger = ri.mergedBy

print "Merged by : " mergerName "\n"

if (ri.mergeDisabled) {

print "Merge disabled, locks removed.\n"

}

print "\n"

DXL Reference Manual

737

738

DXL Reference Manual

739
Chapter 29

OLE objects

This chapter provides information on Rational DOORS DXL support for OLE technology. These functions are currently
only available on Windows platforms. OLE technology support encompasses the linking and embedding of OLE objects
and the use of the system clipboard to manipulate objects that can be embedded and and linked to and from. OLE DXL
supports automation with Rational DOORS as either client or server.

* Embedded OLE objects and the OLE clipboard
* OLE information functions

* Picture object support

* Automation client support

* Controlling Rational DOORS from applications that support automation

Embedded OLE objects and the OLE clipboard

This section defines DXL functions that allow OLE objects to be manipulated within Rational DOORS, and provide a
programmatic means of controlling the OLE clipboard.

oleActivate

Declaration
bool oleActivate (Object o)

string oleActivate (Object o, Column ¢, integer index)

Operation

The first form activates the first OLE object embedded in the object text of 0. The function returns t rue if the object text
of o contains an OLE object and the activation of that object succeeds. Otherwise, it returns false.

The second form activates the OLE object at position index in the column ¢, for the object o.

The command uses the OLE object’s primary verb. For example, a Word object chooses to open in edit mode, while a
video object chooses to play.

Example
/*

this code segment checks whether the object text of the current formal object
contains an OLE object, and if so, activates the first one.

*/

Object obj = current

DXL Reference Manual

740

if (oleIsObject obj) {
if (oleActivate obj == false) {
print "Problem trying to activate object\n"
}
} else {
print "Does not contain an embedded object in its object text\n"
}
/*
this DXL script activates the second OLE object that exists
in column 1 of the module display

*/

oleActivate (current Object, column 1, 1)

oleDeactivate

Declaration
bool oleDeactivate (Object o)

bool oleDeactivate (Object o, Column col, int oleIndex)

Operation

Deactivates the OLE object embedded o. The function returns t rue if o contains an activated OLE object and the
deactivation succeeds. Otherwise, it returns false.

The second variant of this perm deactivates the OLE object specified by oleIndex in the specified column of the passed
formal object. If the oleGetAutoObject () function was called to get the object’s dispatch pointer, the
oleCloseAutoObject () function must be called to release the dispatch pointer before calling this function.

Example
/*

this code segment checks whether the current formal object contains an OLE
object in its object text, and if so, deactivates it

*/
Object obj = current

if (oleIsObject obj) {

if (oleDeactivate obj == false) {
print "Problem trying to deactivate
object\n"
}
} else {

print "Does not contain an embedded object\n"

DXL Reference Manual

741

oleCopy

Declaration
bool oleCopy (EmbeddedOleObject oleObject)

string oleCopy (Object o, Column ¢, integer index)

Operation

The first form copies the embedded OLE object o1eObject into the system clipboard. The OLE object can then be
pasted into another Rational DOORS formal object or into any other Windows application that supports automation.

The second form copies the embedded OLE object at position index in column c for object o, into the system
clipboard. The OLE object can then be pasted into another Rational DOORS formal object or into any other Windows
application that supports automation.

Examples
void checkOLECopy (Object o, string attributeName)
{
RichText rtf
string s = richTextWithOle o.attributeName
for rtf in s do
{
if (rtf.isOle)
{
EmbeddedOleObject ole = rtf.getEmbeddedOle
oleCopy (ole)

break

}
checkOLECopy (current Object, "Object Text")
/*
this example copies the first OLE object in
the current object, in column 1.
*/

string s = oleCopy(current Object, column 1, 0)

DXL Reference Manual

742

oleCut

Declaration
string oleCut (Object o, Column ¢, integer index)

bool oleCut (Object o)

Operation

The first form cuts the embedded OLE object at position index in column ¢ for object o, into the system clipboard.
The OLE object can then be pasted into another Rational DOORS formal object or into any other Windows application
that supports automation.

The second form cuts the embedded OLE object o into the system clipboard. The OLE object can then be pasted into
another Rational DOORS formal object or into any other Windows application that supports automation.

The function returns true if o contains an OLE object and the cut operation succeeds. Otherwise, it returns false.

Example
/*
this code segment checks whether the current formal object
contains an OLE object in its object text, and if it so, cuts it to the
system clipboard, and then pastes it into the next formal
object in the current formal module
*/
Object obj = current

if (oleIsObject obj) {
if (oleCut obj) {

obj = next current
if (obj != null){
if (olePaste obj == false)

print "Problem trying to paste object\n"
}
} else {
print "Problem trying to cut object\n"
}
} else {
print "Does not contain an embedded object in its object text\n"

}

/*
this DXL script cuts the second OLE object that exists in
column 1 of the module display

*/

string s = oleCut (current Object, column 1, 0)

DXL Reference Manual

743

oleDelete

Declaration
bool oleDelete (Object o)

string oleDelete (Object o, Column ¢, integer index)

Operation

The first form removes the embedded OLE object from the object text of 0. The function returns t rue if the object text
of o contains an OLE object and the removal of that object succeeds. Otherwise, it returns false.

The second form deletes the OLE object in column ¢, for object o, at the index index.

Example
/*

this code segment removes an embedded OLE object from the object text of the
current formal object.

*/

oleDelete (current Object)

olelnsert

Declaration
bool oleInsert (Object o, [attrRef],string fileName, [bool insertAsIcon])

where the optional parameter at t rRef is in the following format: (Object o) . (string attrName)
Operation

Embeds the file £1IeName as an OLE object in the Rational DOORS formal object o in a text attribute. If the optional
parameter at trRef is specified, then the OLE object is embedded in the user-defined text attribute. If no parameter is
specified, then the OLE object is embedded in the system Object Text attribute.

If the optional parameter insertAsIcon is specified, then if true, the OLE object is displayed as an icon, else it is
displayed as content. If no parameter is specified, then the default is to display the OLE object as content.

The function returns true on successful insertion of the OLE object. Otherwise, it returns false.

An OLE package is created if a file has no associated applications that support OLE. OLE packages even allow executable
files to be embedded into documents. It is then possible to execute such a file from within the document.

Example
/*

this code segment embeds an existing word document into the current formal
object
*/

string docName = "c:\\docs\\details.doc"

DXL Reference Manual

744

Object obj = current

if (olelInsert(obj, obj."my text", docName)) {
print "Successfully embedded document\n"

} else {
print "Problem trying to embed document\n"

olelnsert (insert to buffer)

Declaration
bool oleInsert (Buffer buflInsert, string fileName, int charPos)
where:

* DbuflInsert is the buffer to insert the OLE into.

* fileName is the full filename of the file to iinsert as an OLE object. (The registered application for the file type
must be available.)

* charPos is the offset in characters at which to insert the OLE. Any value less than 0 means insert at the end of
the buffer.

Operation
Inserts OLE into the given buffer at a given character offset.

Example

Buffer myBuff = create

if (oleInsert (myBuff, "C:\\example.pdf", -1))
print (tempStringOf (myBuff)) "\n"

else
print "Error!\n"

delete myBuff

olelsObject

Declaration
bool oleIsObject (Object o)

Operation

Returns true if o contains an embedded OLE object in its Object Text attribute; otherwise, returns false.

DXL Reference Manual

745

Example
/*

this code segment checks to whether the current formal object contains an OLE
object in its Object Text attribute, and if it does not, embeds a word document.

*/
string docName = "c:\\docs\\details.doc"
Object obj = current

if (oleIsObject obj) {

print "Already contains embedded object\n"}
else {

oleInsert (obj, docName)

oleCloseAutoObject

Declaration
void oleCloseAutoObject (OleAutoObij &oa)

Operation

Closes an open OLE handle (intetface) and deallocates the memory associated with it. It also sets the argument passed to it
tonull.

This function is useful for releasing handles that have been allocated, for example, through the oleGetAutoObject
function. These handles are not normally released until the DXL program exits.

oleCloseAutoObject

Declaration
void oleCloseAutoObject (OleAutoOb] &oa)

Operation

Closes an open OLE handle (interface) and deallocates the memory associated with it. It also sets the argument passed to it
tonull.

This function is useful for releasing handles that have been allocated, for example, through the oleGetAutoObject
function. These handles ate not normally released until the DXL program exits.

oleRTF

Declaration
Buffer 0leRTF (EmbeddedOleObject, Bufferég)

DXL Reference Manual

746

Operation

Takes a chunk of richtext containing an OLE object, and returns the data as RTF loaded into the supplied buffer. This
buffer is also returned allowing it to be used as an immediate assignment.

The buffer is emptied before the RTF is loaded.

olePaste

Declaration

bool olePaste (Object o)

Operation

Pastes the contents of the system clipboard into the object text of 0 as an embedded OLE object. The function returns
true if o does not contain an OLE object and the paste operation succeeds. Otherwise, it returns false.

Example

/*

this code segment checks whether the current formal object contains an OLE
object in its object text, and if it so, cuts it to the system clipboard, and
then pastes it into the next formal object in the current formal module

*/

Object obj = current

if (oleIsObject obj) {
if (oleCut obj) {

obj = next current
if (obj !'= null) {
if (olePaste obj == false) {
print "Problem trying to paste
object\n"
}
}
} else {

print "Problem trying to cut object\n"
}
} else {
print "Does not contain an embedded object in its object text\n"

olePasteSpecial

Declaration
string olePasteSpecial (attrRef, bool displayAsIcon)

where attrRef can be one of:

DXL Reference Manual

747

(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)

Operation

Copies an OLE object from the clipboard and appends it to at tRef. The boolean displayAslcon, when set to true will
display the OLE object as an icon in the object. Returns null on success and displays an error message on failure.

Example
Object o = current

olePasteSpecial (o."object text", false)

olePasteLink

Declaration

bool olePastelLink (Object o)
bool olePastelink (attrRef)
where attrRef can be one of:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)

Operation

The first form pastes the contents of the system clipboard o as a link to an OLE object. This function only succeeds if there
is enough information about the data in the system clipboard to describe its location. Typically this function is used to link
to a section of data in a larger body of data, for example, a paragraph in a Word document. The function returns true if o
does not contain an OLE object and the paste operation succeeds. Otherwise, it returns false.

The second form inserts from the system clipboard into the text attribute referred to by attrRef.

Example

/*

this code segment checks to see whether the current formal object contains an
OLE object in its object text, and if it does not, pastes a link to the object
described in the system clipboard.

*/
Object obj = current
if (oleIsObject obj == false) {
if (olePastelink obj == false) {
print "Problem trying to paste link to
object\n"

DXL Reference Manual

748

}

} else {
print "Does not contain an embedded object\n"

oleSaveBitmap

Declaration
oleSaveBitmap (Object o)

Operation

Forces a write of the picture for the current object. This affects OLE display on UNIX platforms.
Example

Object o = current

oleSaveBitmap (o)

oleCount

Declaration

int oleCount (attrRef)

whete attrRef can be one of:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)

Operation

Returns the number of OLE objects embedded in the attribute (new version of oleIsObject (Object))

Example
Object o = current
int n = oleCount(o."Object Text")

print "Number of OLE objects in Object Text attribute for current object: " n ""

isOleObjectSelected

Declaration
bool 1isOleObjectSelected (Object o)

DXL Reference Manual

749

Operation

Returns true if an OLE object is selected in the specified Object o. If anything other than an OLE object is selected (e.g.
text and an OLE object), the function returns false. If two or more contiguous OLE objects are selected, the function

returns true.

showOlePropertiesDialog

Declaration
void showOlePropertiesDialog (Object o)

Operation

Shows the OLE properties dialog for the selected OLE object in the specified Object o.

e Ifno OLE object is selected, the dialog will not appear.

* Ifanything other than an OLE object is selected (e.g. text and an OLE object), the function returns false.

* If two or more contiguous OLE objects are selected, the options dialog will appear for the first object.

containsOle

Declaration

bool containsOle (attrRef)

where attrRef can be one of:

(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1).(string attrName)
Operation

Returns true if the specified attribute contains OLE data
Example

Object o = current

if (containsOle (o.”Object Text”)) {

oleActivate (o)

DXL Reference Manual

750 ‘

OLE information functions

getOleWidthHeight

Declaration

string getOleWidthHeight (EmbeddedOleObject embedOle, int &width, int &height)

Operation

These functions provide information on Embedded OLE objects as demonstrated by the following examples.

Example 1

void checkOLEcount (Object o, string attributeName)

{

int n = oleCount (o.attributeName)
RichText rtf
string s = richTextWithOle o.attributeName
int § =0
for rtf in s do
{
if (rtf.isOle)
{

J++

print "ERROR: oleCount gives " n " and for rtf in string gives " j "\n"
} else {

print "OK: they both give " n "\n"

Object o = current

checkOLEcount (o, "Object Text")

DXL Reference Manual

Example 2

void checkExportPicture (Object o, string attributeName,

{
EmbeddedOleObject ole

int 1 =1
string errmess = null
RichText rtf
string s = richTextWithOle o.attributeName
i=1
for rtf in s do
{
if (rtf.isOle)

{
ole = rtf.getEmbeddedOle

string baseFileName)

string filename = baseFileName "-rtfloop-" 1 ".png"
print "Exporting " filename "\n"
errmess = exportPicture(ole,filename , formatPNG)

if (!'null errmess)

{

print "ERROR: " errmess "\n"

i++

}
Object o = current

checkExportPicture (o, "Object Text", "C:\\temp\\")
Example 3
void checkOLECopy (Object o, string attributeName)

{
RichText rtf

string s = richTextWithOle o.attributeName

for rtf in s do

DXL Reference Manual

751

752

if (rtf.isOle)

{
EmbeddedOleObject ole = rtf.getEmbeddedOle
oleCopy (ole)

break

checkOLECopy (current Object, "Object Text")

Example 4
void checkOLEWidthHeight (Object o, string attributeName)
{
EmbeddedOleObject ole
RichText rtf
string s = richTextWithOle o.attributeName
int width, height
for rtf in s do
{
if (rtf.isOle)
{
ole = rtf.getEmbeddedOle
getOleWidthHeight (ole, width, height)
print ("width = " width ", height = " height "\n")

checkOLEWidthHeight (current Object, "Object Text")

//run with an object containing several OLEs of different sizes in the object
text

DXL Reference Manual

753

Example 5
Object o = current
int width
int height
string mess = getPictWidthHeight (o, width, height)
if (null mess)
{
print "w = " width ", h = " height "\n"
lelse(

print mess "\n"

Run this against an object with an embedded picture, an object with at least one OLE object in the object text and an object

with no OLE objects or pictures.

oleSetMaxWidth

Declaration

string oleSetMaxWidth (attrRef, int width)
where attrRef can be one of:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

Sets the maximum width of an OLE object in the attribute a t t rRe f. Any OLE object wider will be scaled down to fit the
column (the aspect ratio will be maintained).

Returns an error message if anything goes wrong.

oleSetMinWidth

Declaration

string oleSetMinWidth (attrRef, int width)
whete attrRef can be one of:

(Object o). (string attrName)

(Module m) . (string attrName)

DXL Reference Manual

754

(Link 1).(string attrName)

Operation

Sets the minimum width of an OLE object in the attribute at t rRef. Any OLE object narrower will be scaled up to fit the

column (the aspect ratio will be maintained).

Returns an error message if anything goes wrong.

oleSetHeightandWidth

Declaration

oleSetHeightandWidth (attrRef, int height, int width, int index)
where attrRef can be one of:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1) . (string attrName) Operation
Sets the height and width of the OLE object within attrRef at the specified index.

Example
Object o = current Object
oleSetHeightandWidth (o."Object Text", 150, 150, 1)

oleResetSize

Declaration

string oleResetSize (attrRef)
whete attrRef can be one of:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

Resets the width and height of the OLE objects in the attribute attrRef to their actual size.

Example 1
Scale to fit main column

Sets the max and min width of OLEs in the object text to the width of the main column.
Object obj

Column col

DXL Reference Manual

Column mainColumn

for col in current Module do

{
if
{

}

(main col)

mainColumn

break

= col

int width = width (mainColumn)

string errmess = ""

for obj in current Module do

{

int numOles =

if
{

}

if (!null errmess)

{

(numOles >

errmess =
if (!'null
{

break
}
errmess =
if (!null
{

break

oleCount (obj."Object Text")
0)

oleSetMaxWidth (obj."Object Text", width)

errmess)

oleSetMinWidth (obj."Object Text", width)

errmess)

print "ERROR:" errmess "\n"

}

Example 2

Reset main column OLEs

DXL Reference Manual

755

756

Resets the size of all OLE objects in the Object Text
Object obj
Column col
Column mainColumn
for col in current Module do
{

if (main col)

{

mainColumn = col

break

}

int width = width (mainColumn)

string errmess = ""

for obj in current Module do

{
int numOles = oleCount (obj."Object Text")
if (numOles > 0)

{

errmess = oleResetSize (obj."Object Text")
if (!'null errmess) {
break

}

if (!null errmess)

{

print "ERROR:" errmess "\n"

DXL Reference Manual

Picture object support

These functions allow DXL to import pictures into Rational DOORS, and work with objects that contain pictures. In
Rational DOORS 6.0 and later, pictures are unique to an object, and it is not necessary to identify a picture with a name.

The functions using a picture name argument should be used for backwards compatibility only.

Constants

The following constants of type int are valid values for arguments that specify the format of a picture:

Import format Description
formatBMP Bitmap

formatDIB Bitmap

formatWMF Windows meta file
formatEPSF Encapsulated PostScipt
formatUNKNOWN Unknown format

Export format

formatPNG

changePicture

Declaration

bool changePicture(string currentName,

Operation

string newName)

Changes the name of a given picture by passing the current and new names. Returns true if the operation succeeds. This
function is retained only for compatibility with eatlier releases.

copyPictureObject

Declaration

void copyPictureObject (Object source,

Object target)

DXL Reference Manual

757

758

Operation

Copies a picture from the source object to the target object. It generates a run-time DXL error if either argument is null.

deletePicture

Declaration
bool deletePicture (Object o)

bool deletePicture(string pictureName)

Operation
Deletes the picture in object o. If the object is not a picture, the call fails.

The second form is retained only for compatibility with earlier releases. All new programs should use the first form.

Example

if (deletePicture current) {
print "Successful deletion\n"
} else {
print "Failed to delete picture\n"}

exportPicture

Declaration

string exportPicture (Object obj,
string fileName,
int format)

Operation

Exports a picture, including OLE objects, associated with a given object to the file £i1eName in the specified format.
Some pictures, when exported, may have a black border.

The only supported export format is format PNG.

Example

Object o = current

string n = o."PictureName"

string s = exportPicture(o, n ".png", formatPNG)

if ('null s) {
print s " . " n n\nu

DXL Reference Manual

exportPicture

Declaration

string exportPicture (EmbeddedOleObject oleObject,
string fileName,
int format)

Operation

Exports a picture, including OLE objects, associated with a given object to the file £ileName in the specified format

format.

Example

void checkExportPicture (Object o, string attributeName,

{
EmbeddedOleObject ole
int 1 =1
string errmess = null
RichText rtf
string s = richTextWithOle o.attributeName
i=1

for rtf in s do
{
if (rtf.isOle)
{
ole = rtf.getEmbeddedOle

string baseFileName)

string filename = baseFileName "-rtfloop-" i ".png"
print "Exporting " filename "\n"
errmess = exportPicture(ole,filename , formatPNG)

if (!'null errmess)

{

print "ERROR: " errmess "\n"

it++

}

Object o = current

checkExportPicture (o, "Object Text", "C:\\temp\\")

DXL Reference Manual

759

760

getPictBB
Declaration
void getPictBB (Object o,
int &11x,
int &l1ly,
int &urx,
int &ury)

Operation

Returns the picture’s bounding box measured in tenths of a point. The bounding box is specified by its lower-left and
upper-right co-ordinates.

getPictFormat

Declaration

string getPictFormat (Object o)

int getPictFormat (Object o)

Operation

The first form returns the name of the format of the picture in object o.

The second form returns an integer corresponding to the format of the picture in object o.

Possible format names and integers are:

"EPSE" 1 Encapsulated PostScript
"BMP" 2 Windows Bitmap
"WME" 3 Windows Meta File
Example
if (getPictFormat current Object != "EPSF") {
ack "Cannot output this picture format"
halt
}
getPictName
Declaration

string getPictName (Object o)

DXL Reference Manual

761

Operation

If o contains a picture in a format supported by Rational DOORS, this function returns the picture file name; otherwise, it
returns null. The returned file name should be treated as a read-only handle. This function is intended for use by
exporters.

If the operation fails, returns null.

getPictWidthHeight

Declaration

string getPictWidthHeight (Object o,
int &width,
int &height,)
Operation

On return, passes back by reference the picture’s width and height in pixels. The object must contain either a picture or an
OLE object.

On Windows platforms, if it is an OLE object, a bitmap is generated of the OLE object, then the width and height taken of
the bitmap.

On UNIX platforms, this function returns the width and height of the picture snapshot of the OLE object (picture
snapshots are stored in the database if oleunix=true is included in the registry). If a snapshot does not exist, returns an
error message to indicate that the width and height are unavailable.

If the operation succeeds, returns null; otherwise returns an error message.

Example

int width

int height

Object o = current

bool bIsPicture = o."Picture"
bool bIsOLE = o."OLE"

if (bIsPicture || bIsOLE) {
string errmsg = getPictWidthHeight (o)
if (null errmsqg)

{

print "width = " width " ,height=" height
} else {

print errmsg
}

DXL Reference Manual

762

importPicture

Declaration

bool importPicture(string pictureName,
string fileName,
string format)

Operation

Imports pictures into Rational DOORS. This function is retained for compatibility with earlier releases, but is redundant in
Rational DOORS 6.0 and later.

The pictureName argument is the name for the picture once it is imported; £ileName is the file you are importing
from; and format is the format of the picture, which can be one of "WMF", "BMP" or "EPSF" (case insensitive).

Returns true if the import succeeds; otherwise, returns false.

Example

if (importPicture ("Test", "c:\\test.bmp", "BMP")) {
print "Successfully imported picture
test.bmp\n"
} else {
print "Failed to import picture test.bmp\n"

insertBitmapFromClipboard

Declaration

bool

insertBitmapFromClipboard (Object insertHere)
Operation

Inserts a bitmap of any format except an OLE object from the Windows clipboard into the object insertHere. The
object must already contain a picture, which is replaced. If the operation succeeds, returns t rue; otherwise, returns
false.If insertHere is null, the call fails.

For UNIX platforms, returns false.

saveClipboardBitmapToFile

Declaration

bool saveClipboardBitmapToFile (string fileName)

Operation

If there is a valid bitmap on the Windows clipboard, saves it to the specified file. The argument £1leName can be an
absolute or relative path. If the operation succeeds, returns t rue; otherwise, returns false.

DXL Reference Manual

763

For UNIX platforms, returns false.

Example
string FileName=tempFileName ()

saveClipboardBitmapToFile (FileName)

insertPictureAfter

Declaration
bool insertPictureAfter (string pictureName, Object insertHere)
Operation

Inserts picture pictureName after an object insertHere. This function is supported only for compatibility with
carlier releases. In new programs, use the insertPictureFileAfter function.

Example

if (insertPictureAfter ("Test", current Object)) {
print "Successful picture insertion\n"

} else {
print "Failed to insert the picture\n"}

insertPictureBelow

Declaration

bool insertPictureBelow (string pictureName, Object insertHere)
Operation

Inserts picture pictureName below an object insertHere. This function is supported only for compatibility with
catlier releases. In new programs, use the insertPictureFileBelow function.

Example

if (insertPictureBelow ("Test", current Object)) {
print "Successful picture insertion\n"

} else {
print "Failed to insert the picture\n"

insertPictureFile

Declaration

bool insertPictureFile(string fileName,
int format
Object insertHere)

DXL Reference Manual

764

Operation

Inserts picture £1leName into object insertHere, which must be a picture object. If the operation succeeds, an
existing picture in the object is replaced with that in £i1eName. The format argument can be one of the import values
listed in “Constants,” on page 757.

Example
Object currentObject = current

bool Result = false

string BitmapFileName = "c:\\test.bmp"
if (currentObject == null) {
//No objects currently exist in the module
Result = insertPictureFile (BitmapFileName,
formatBMP, currentObject)
} else {
Result = insertPictureFile (BitmapFileName,

formatBMP, currentObject)
}

if (Result) {
print "Successful picture insertion\n"

insertPictureFileAfter

Declaration

bool insertPictureFileAfter(string fileName,
int format
Object insertHere)

Operation

Inserts picture £1leName after an object insertHere. The format argument can be one of the import values listed in
“Constants,” on page 757.

Example

Object currentObject = current

bool Result = false

string BitmapFileName = "c:\\test.bmp"

if (currentObject == null) {
//No objects currently exist in the module
Result = insertPictureFileAfter (BitmapFileName,
formatBMP, null)
} else {
Result = insertPictureFileAfter (BitmapFileName,
formatBMP, currentObject)

DXL Reference Manual

765

}
if (Result) {
print "Successful picture insertion\n"

insertPictureFileBelow

Declaration

bool insertPictureFileBelow(string fileName,
int format
Object insertHere)

Operation

Inserts picture £ileName below an object insertHere. The format argument can be one of the import values listed in
“Constants,” on page 757.

Example

Object currentObject = current

bool Result = false

string BitmapFileName = "c:\\test.bmp"

if (currentObject == null) {
//No objects currently exist in the module

Result = insertPictureFileBelow (BitmapFileName,
formatBMP,null)
} else {
Result = insertPictureFileBelow (BitmapFileName,
formatBMP, currentObject)
}

if (Result) {
print "Successful picture insertion\n"

oleLoadBitmap

Declaration

Bitmap oleLoadBitmap (DBE dialog,
Object fromHere,
bool lockColors,
inté& width,

int& height)

Operation
Returns a bitmap handle for the given OLE object, provided the OLE bitmap has been stored.

DXL Reference Manual

766

The handle to the bitmap can then be used to draw the picture onto a canvas.
The function requires passed width and height; when the function exits these become the width and height of the picture.

OLE bitmaps are only stored in Rational DOORS 4.1 and later releases, and then only if you have not run Rational
DOORS with the command line option to prevent it storing the picture.

Example
b = olelLoadBitmap (dbMain, current Object, true,
w, h)
DBE dbMain
void doDraw (DBE dbMain) {
Bitmap b
int w, h
b = oleloadBitmap (dbMain, current Object, true,

w, h)
drawBitmap (dbMain, b, 0,0)
}

DB artBox = create "Try resizing"
dbMain = canvas (artBox, 400, 300, doDraw)

show artBox

openPictFile

Declaration

Stream openPictFile (Object o)

Operation

Opens a read-only stream for the file containing the picture referenced in the named object.

Example

Stream picture = openPictFile thisObj

pictureCopy

Declaration
bool pictureCopy (Object object)

Operation

On Windows platforms only, copies the picture in the specified object to the system clipboard.

Example

bool Result = pictureCopy (current)

DXL Reference Manual

767

if (Result) {

print "Picture successfully copied\n"
} else {

print "Picture not copied\n"

reimportPicture

Declaration

bool reimportPicture (string pictureName)

Operation

This function is provided only for compatibility with eatlier releases. It has no effect in Rational DOORS 6.0 or later.

for pictures in project

Syntax

for s in pictures (Project p) do {

where:

s is a string variable

P is a project of type Project
Operation

This loop is retained for compatibility with eatlier release. Because of the changes to access restrictions in Rational DOORS
6.0, where pictures are specific to a module, this loop returns the names of the pictures in the current module only.

Example
This example prints the names of all pictures in the current module.
string s

for s in pictures current Project do {
print s " \n"

supportedPictureFormat

Declaration

bool supportedPictureFormat (int format)

DXL Reference Manual

768

Operation
Returns true if the specified format is supported by the current client.
Example

if (supportedPictureFormat (formatWMF)) {
print "WMF format is supported.\n"

pictureCompatible

Declaration

bool pictureCompatible (string filename, int format)

Operation

Returns true if the specified file has header information which indicates that it contains a picture of the specified format.
Example

string fileName = “C:\\temp\\mypic.bmp”

if (pictureCompatible (fileName, formatBMP)) {
print fileName " is a valid BMP file.\n"

Automation client support

This section defines DXL functions with which Rational DOORS can be used as an automation client. That means Rational
DOORS can be used to control other Windows applications that provide automation interface objects. Information on
interface objects, methods and properties for other applications is available in the relevant automation documentation.

The functions fall into three groups:

e Accessing an interface

The DXL functions oleCreateAutoObject and oleGetAutoObject provide access to automation
interfaces in other applications. In addition to obtaining interface objects in these specific ways, interface objects can
also be retrieved by accessing the properties or making method calls to other interface objects.

* Getting and setting properties

The DXL functions oleGet and olePut provide access to automation object properties. The values of a property
can be retrieved from an automation object, and where the object enables it, they can also be set.

* Calling automation methods

DXL Reference Manual

769

In addition to providing access to properties, automation interfaces can also provide methods. These provide access to
capability in the other application and can return data as a result of their execution. In addition they might require data
to be passed to them as arguments. Rational DOORS provides support for automation methods with the various
oleMethod functions, the OleAutoArgs variable type and the various functions that can be used to manipulate
variables of that type: create (OleAutoArgs), delete (OleAutoArgs), clear (OleAutoArgs),

put (OleAutoArgs), and oleMethod.

oleGetResult

Declaration
string oleGetResult ()

Operation

Rational DOORS provides the read-write Result property to automation clients, enabling them to exchange information
with DXL programs. This function gets the value of this property.

Example

if (oleGetResult == "OK") {
// operation was successful

oleSetResult

Declaration

void oleSetResult (string message)

Operation

Rational DOORS provides the read-write Result property to automation clients, enabling them to exchange information
with DXL programs. This function sets the value of this property.

oleCreateAutoObject

Declaration

OleAutoObj
oleCreateAutoObject (string autoObjName)

Operation

Obtains a reference to a named automation interface. With a type OleAutoOb] it is then possible to access properties and
call methods. The application to support the interface object is started when this function is called.

Example

OleAutoObj theWordApp = oleGetAutoObject ("Word.Application")

DXL Reference Manual

770

if (null theWordApp) {
theWordApp =
oleCreateAutoObject ("Word.Application")

}

olePut (theWordApp, "visible", true)
infoBox "Now you see it."

olePut (theWordApp, "visible", false)

infoBox "Now you don't."

oleGetAutoObject

Declaration
OleAutoObj oleGetAutoObject (Object o)

OleAutoObj oleGetAutoObject (string autoObjName)

Operation

The first form obtains a reference to an automation interface object for the OLE object embedded in o. The OLE object
must be activated using the oleActivate() function before calling this function. With a type OleAutoOb] it is then possible
to access properties and call methods. The application to support the interface object is started when this function is called.

This function returns the base level interface to the embedded object. Not all objects that support embedding and
automation also support automation of embedded objects. For objects that are not supported, null is returned.

The second form obtains a reference to an instance of the application that is already running. For an example of its use, see
the example for the oleCreateAutoObject function.

oleGet

Declaration

string oleGet (OleAutoObj autoObj,
string propertyName,
[OleAutoArgs argumentList,]
{string|int|bool|char|0OleAutoOb]j}
&Result)

Operation

Obtains the value of a specified property for a specified automation object, with optionally a list of arguments of type
OleAutoArgs, and with Result set to the appropriate type.

The variation of this function that enables access to an OleAutoOb] value is particularly useful when controlling an
application that has a hierarchy of objects.

If the value of a property is successfully returned, returns null; otherwise returns a string containing an error message.

DXL Reference Manual

771

Example

This example obtains a reference to an automation interface to Excel, gets the visible attribute, and makes it visible if it is
hidden:

OleAutoObj objExcel = oleCreateAutoObject ("Excel.Application")

if (objExcel != null) {
bool excelVisible
oleGet (objExcel, "Visible", excelVisible)

if (excelVisible == false) {
olePut (objExcel, "Visible", true)

olePut

Declaration

string olePut (OleAutoObj autoObj,
string propertyName,
{string|int|char|bool|0OleAutoObj}
newValue)

Operation

Sets the value of a specified property for a specified automation object, with newValue set to the appropriate type. If the
value of a property is successfully set, returns null; otherwise, it returns a string containing an error message.

create(OleAutoArgs)

Declaration

OleAutoArgs create (void)

Operation

Initializes and returns a type OleAutoArgs variable.

Example

/*Typical call to create for an OleAutoArgs variable*/

OleAutoArgs autoArgs = create

delete(OleAutoArgs)

Declaration
void delete (OleAutoArgs autoArgs)

DXL Reference Manual

772

Operation

Destroys a type OleAutoArgs vatiable and frees any system resources used by it. After a type OleAutoArgs variable
has been deleted with this function, it becomes invalid and cannot be used again until initialized with the create
(OleAutoArgs) function.

Example
This example is a typical call to delete for a variable of type OleAutoArgs:
OleAutoArgs autoArgs = create

delete (autoArgs)

clear(OleAutoArgs)

Declaration

void clear (OleAutoArgs autoArgs)

Operation

Empties the contents of a type OleAutoArgs variable, returning it to the state it was in immediately after it was initialized
with the create command. This enables a single type OleAutoArgs variable to be created and then reused again and
again throughout a DXL application.

Example

This example is a typical call to clear for a variable of type OleAutoArgs:

OleAutoArgs autoArgs = create

clear (autoArgs)

/*
code using the same autoArgs variable for something different

*/
delete (autoArgs)

put(OleAutoArgs)

Declaration

void put (OleAutoArgs autoArgs,
[string argName,]
{string|int|char|bool|0OleAutoOb]j} value)

Operation

Stores a value of the appropriate type in a type OleAutoArgs variable autoArgs. The optional argument argName
enables arguments to be named. If it is omitted, the values are inserted into the argument block in the order in which they

are supplied.

DXL Reference Manual

773

This means that where the automation object supports named arguments, the formal ordering of arguments is not
necessary. Both named and ordered arguments are permitted in the same OleAutoArgs variable.

For examples of usage see the example for the oleMethod function.

oleMethod

Declaration

string
oleMethod (OleAutoObj autoObj,
string methodName
[,0leAutoArgs autoArgs
[, {string|int|char|bool|0leAutoObj}
result]])

Operation

Uses a specific automation interface to call a specific automation method. Optionally you can specify an argument block.
With an argument block, optionally, you can specify a return value of a specific type. If the operation succeeds,
oleMethod returns null; otherwise, it returns a string containing an error message.

Controlling Rational DOORS from applications that support
automation

This section defines functions for controlling Rational DOORS from other applications that support automation. For
example, Visual Basic macros can be created in Excel to send commands to Rational DOORS.

Automation interface

Rational DOORS provides an automation interface for other applications to use to control Rational DOORS. This object is
called DOORS . Application. It provides two methods that can be called from other applications, along with the
property Result.

The property, DOORS . Application.Result, enables other applications to exchange information with Rational
DOORS in both directions. From Rational DOORS, use the oleGetResult and oleSetResult functions to pass
information to and from a Visual Basic program.

Example
/*

This is an example of an Excel macro that calls Rational DOORS, logging in as
user 'John Smith' with password 'password', and sets the result message for use
with oleGetResult.

*/

Sub testDoors ()

DXL Reference Manual

774

Set DOORSObj = CreateObject ("DOORS.Application")
SendKeys "John Smith" & "{TAB}" & "password" & _
"{ENTER}", True

DOORSObj.Result = "Just checking”

End Sub

Sub testDoors ()

Set DOORSOb]j = CreateObject ("DOORS.Application")

SendKeys "John Smith" & "{TAB}" & "password" &
"{ENTER}", True

DOORSObJj.runFile ("c:\doors\lib\dxl\example\ddbintro.dxl")
End Sub

(runStr sample)
Sub testDoors ()
Set DOORSOb]j = CreateObject ("DOORS.Application")
SendKeys "John Smith" & "{TAB}" & "password" & _

"({ENTER}", True

DOORSObj.runStr ("current = create(""Demo"", ""Demo"", """", 1); Object o =
create current Module; o.""Object Heading"" = ""From Excel via OLE""")
End Sub
runFile
Syntax

runFile (dx1FileName)
where:
dx1FileName is a full path

Operation

This method enables other applications to pass Rational DOORS the path and file name of a DXL file, then requests
Rational DOORS to tun it.

Example

This example is an Excel macro that calls Rational DOORS, logging in as user John Smith with password password, and
requests it to run the ddbintro example from the DXL library:

DXL Reference Manual

775

Sub testDoors ()
Set DOORSOb]j = CreateObject ("DOORS.Application")

SendKeys "John Smith" & "{TAB}" & "password" &
"{ENTER}", True

DOORSObj.runFile ("c:\doors\lib\dxl\example\
ddbintro.dx1l")
End Sub

Note: There has been a change in functionality between Rational DOORS 7.x and Rational DOORS 8 concerning
runFile. Any files passed to runFile must be transcoded to UTF-8 encoding rather than Latin-1.
Alternatively, you can use runStr to #include a file. The behavior of runStr is unchanged since version 7.

runStr

Syntax
runStr (dxl1Text)
where:

dx1Text is a string

Operation
This method enables other applications to pass Rational DOORS a string containing DXL functions for Rational DOORS

to execute.

You can send more than one line to runStr at a time by using \n or ; in the string.

Example

This example is an Excel macro that calls Rational DOORS, logging in as user John Smith with password password, and
requests it to create a new module. The macro then creates an object in the module:

Sub testDoors ()
Set DOORSOb]j = CreateObject ("DOORS.Application")

SendKeys "John Smith" & "{TAB}" & "password" &
"{ENTER}", True

DOORSObj.runStr ("current = create (""Demo"",

" "Demoll ", mmwn ", l) ;
Object o = create first current Module;
0."Object Heading" = "From Excel via OLE" "")

End Sub

DXL Reference Manual

776

DXL Reference Manual

777
Chapter 30

Triggers

This chapter describes triggers, a powerful mechanism for associating Rational DOORS scripts with events in Rational
DOORS.

* Introduction to triggers
* Trigger constants

e Trigger definition

* Trigger manipulation

* Drag-and-drop trigger functions

Introduction to triggers

Triggers are a mechanism in DXT. for associating an event, such as opening a project or modifying an attribute, with a DXL
program. This provides a very powerful customization facility that can be used for a number of tasks, including process
enforcement. Triggers are created, managed, and deleted in DXL.

Note: Rational DOORS Web Access does not support triggers.

There are two examples demonstrating the use of triggers: defview.dx1l and delview.dxl that permit the
automatic loading of a user’s preferred view in a formal module. These are in the directory called:
$DOORSHOME/1ib/dx1l/example

Triggers are described in terms of level, type and event.
There are six trigger levels:

* module

* object

* attribute*

e links

* discussion

* comment

*The use of module-level system attributes, such as Name and Description, is not supported with triggers.
There is one trigger type:

* post

There are two trigger events:

DXL Reference Manual

778

* A pre-event trigger is a mechanism for performing an action or a check before an event happens. The code executed
can return a veto, which prevents the subsequent event from happening. When multiple triggers have been defined for
the same event, trigger execution is ordered on the trigget’s priority. For a pre-event to succeed, all pre-events must
succeed.

* A post-event trigger is executed after the associated event happens, for example after a module is opened.

Basic trigger events

There are eight basic event types:

Event Synonyms

open edit, read
close

save write, modify
sync

drag

drop

create

delete

The only current application for the sync event is changing the current object in a formal and link module. The following
table shows currently supported event and level combinations:

open close save sync drag drop create delete
module X X X X
object be X X X X
attribute X
links X X
discussion X X
comment X X

Both pre-event and post-event types are supported for all marked combinations.
Trigger levels have the following two extra dimensions: scope and priority.

The object open event will only occur when double-clicking on the object. Viewing the object through Object Properties
will not cause an open event.

DXL Reference Manual

779

Trigger scope

Triggers are database wide or specific to a module, object, or attribute. They can be generic or specific.

generic Trigger applies to all entities at trigger level, for example, all modules, all
objects, all attributes.

specific Trigger applies to a specific entity, for example, module "URD" means
the module called URD, current means the current entity (as in
current Module) at a trigger level.

Specific items defined ate for each level.

project project name

module module name

object absolute number, as string
attribute attribute name

Generic module triggers are stored in the specified project or the current project, unless the trigger is specified as database
wide using the project->all syntax. In this case, they are stored in the database root folder.

Trigger Example:

Trigger "tl" applies to all modules in the database.
trigger ("tl", project->all->module->all, pre, open, 10, ..)
Trigger "t2" applies to all modules in project "pl".
trigger ("t2", project->"pl"->module->all, pre, open, 10, ..)
Trigger “t3” applies to all links in module “ml”.

trigger (“t3”, module->"ml”->1links, post, create, 10, ..)

Specific module triggers, including all object level and attribute level triggers, are stored in the module to which they apply.
If the trigger specification does not name a specific module, they are stored in the current module.

For modules, you can also restrict to a particular type of module: formal, link, or descriptive.

If you want an object trigger to apply only to the cutrent object at definition time, you must give its absolute number as a
specific argument:

project->module->object->"13"

To simplify the notation you can omit mention of the project or module levels when you want the current project or
module. The example becomes:

attribute->"Cost"

In summary, if you do not mention a level, you mean the current position in the Rational DOORS schema at the time of
definition.

DXL Reference Manual

780

Trigger events

There are eight classes of event, with synonyms:

open, read Synonyms for the same fundamental event, open is usually used with
projects and modules, while read is used with objects.

close Triggered when Rational DOORS is about to close a project or a module.

write, save, Synonyms for wanting to make a change; currently only supported for

modify attribute modification.

sync Triggered when the current object changes in a formal module.

drag Triggered when the user starts a drag operation from a formal module
object.

drop Triggered when data is dragged from another application and dropped onto

a displayed formal module object.
create Applies to discussions, comments and links, fires on their cteation.

delete Applies to discussions, comments and links, fires on their deletion.

If you try to define an unsupported trigger combination, an error message is issued.

Trigger priority

Triggers are assigned an integer priority; lower valued priorities are executed before higher valued priorities.

Persistent versus dynamic triggers

There are two further classes of trigger:

persistent Stored in Rational DOORS; once defined, persists between sessions until
deleted.
dynamic Not stored; persists only for the loaded lifetime of the project or module

that defines it.

Note: In Rational DOORS 8.2 and later versions, drag-and-drop triggers can only be dynamic.

DXL Reference Manual

781

Trigger constants

This section lists constants that are used in the definition of triggers. Some are defined through internal data types; others
are of type TriggerStatus.

levels

A level can be one of the following values:
project

module

object

attribute

links

discussion

comment

level modifiers

A level modifier can be one of the following values:
all

formal

link

descriptive

These values specify the type of module affected.

event types

An event type can be one of the following values:
pre

post

event names

An event name can be one of the following values:
open

read

DXL Reference Manual

782

close
save
modify
sync
create

delete

Trigger definition

This section defines an operator for assembling triggers and functions for triggers. They use internal data types or the data
type Trigger.

Trigger level assembly

The —> operator is used to describe the extent to which a trigger is applied:

Syntax

The syntax for using the —> operator is as follows:
1 -> 12

1 -> mod

1 -> string name -> mod

1 -> string name -> string name2

where:
112 are levels: project, module, object or attribute
name nameZz are strings
mod is a modifier: all, formal, 1ink, or descriptive
Operation

The operator combines trigger level descriptions and specifies the scope of a trigger.

Example

e This attribute-level trigger is applied to the Cost attribute in the module named URD in the current folder:
module->"URD"->attribute->"Cost"

* This module-level trigger is applied to all formal modules in the current project:

module->all->formal

DXL Reference Manual

783

project->module->all>formal
These level descriptors are invalid if there is no cutrent project.
e This module-level trigger is applied to all formal modules in the database:
project->all->module->formal->all
* This object-level trigger is applied to all formal modules in the improvements project:
project->"improvements"->module->all->formal->object->all
* This object-level trigger is applied to the current module:
module->object->"23"

This level descriptor is invalid if there is no current module.

trigger(persistent)
Declaration
Trigger trigger (string name,
1,
t,
e,
int p,

string dxl1)

where:
1 is a level: project, module, object, attribute, attrdef,
attrtype, or links
t is a type: pre or post
e is an event: open, read, close, save, modify, sync, create,
or delete
P is a priority: indicates the order that similar triggers are executed

dxl1 the dxl code that will be executed by the trigger

Operation

Creates a trigger, named name, at level 1, of type t, of event e, with priority p, and code dx1. If the operation fails, the
function returns null. If the user does not have the appropriate modify access, the call fails.

* To create a stored database wide trigger, the user must have modify access to the database root folder.
* To create a trigger stored in a project, the user must have modify access to the project.
e To create a trigger stored in a module, the user must have modify access to the module.

Optionally, the level can be a compound level description.

DXL Reference Manual

784

These triggers are persistent between sessions, and so need be created only once.
Example

This example creates a project level, pre-type, open event trigger of priority 10, using a program stored in
$SDOORSHOME/1ib/dx1l/triggers/projOpen.dxl:

Trigger tl = trigger ("init", project,
pre, open, 10,
"#include <triggers/projOpen>")

This example sets up a trigger, which is executed when any module is about to be closed:

Trigger t2 = trigger ("mod", module->all,
pre, close, 10,
"#include <triggers/modClose>")

trigger(dynamic)
Declaration
Trigger trigger (1,
e,
int p,

{bool pre(Trigger) |
void post (Trigger) })

where:
1 is a level: project, module, object, attribute,
attrdef, attrtype, or links
e is an event: open, read, close, save, modify, sync,
create or delete
P is a priority: indicates the order that similar triggers are executed
Operation

Creates a dynamic trigger, which is not persistent between sessions, at level 1, of event e and priority p. The pre callback
function determines whether the operation happens or not. The callback function for a post event is a void function.

Optionally, the level can be a compound level description.

DXL Reference Manual

785

delete(trigger)

Declaration

string delete(string name,
1,
[string name2,]
t,
ey
int p,)

string delete (Trigger &d)

where:
1 is alevel: project, module, object, attribute,
attrdef, attrtype, or links
t is a type: pre or post
e is an event: open, read, close, save, modify, sync,
create or delete
P is a priority: indicates the order that similar triggers are executed
Operation

The first form deletes the specified trigger. The second form deletes trigger d, and sets d to null. If the operation succeeds,
returns null; otherwise, returns an error message. If the user does not have the appropriate modify access, the call fails.

To delete a stored database wide trigger, the user must have modify access to the database root folder. To delete a trigger
stored in a project, the user must have modify access to the project. To delete a trigger stored in a module, the user must
have modify access to the module.

This example deletes all triggers:
Trigger t

for t in current Project do delete t

Trigger manipulation

This section defines functions that return information about, or modify triggers.

DXL Reference Manual

786

for trigger in database

Syntax

for t in database do {

where:

t is a vatiable of type Trigger

Operation

Assigns trigger t to be each successive database wide trigger.

for trigger in project

Syntax

for t in project do {

}

where:
t is a variable of type Trigger
project is a variable of type Project
Operation

Assigns trigger t to be each successive trigger in the specified project, and in any open modules in the project. The
appropriate modules in the project must be open to allow access to the relevant trigger information. It includes all
subprojects.

Example
This example deletes all triggers:
Trigger t

for t in current Project do delete t

DXL Reference Manual

787

for trigger in module

Syntax

for t in m do {

where:
m is a vatiable of type Module
t is a variable of type Trigger
Operation

Assigns trigger t to be each successive trigger in m, which must be an open module to allow access to the relevant trigger
information.

level, type, event(trigger)

These functions are used as shown in the following syntax:
level (Trigger t)

type (Trigger t)

event (Trigger t)

Operation

These functions return values for the level, type and event of trigger t, as follows:

level project module object attribute
attrdef attrtype links

type pre post

event open read close save modify sync
create delete

stringOf(trigger)

These functions are used as shown in the following syntax:
string stringOf (level)
string stringOf (type)

string stringOf (event)

DXL Reference Manual

788

Operation

Return the string version of trigger level 1evel, the trigger type type, or trigger event event, as follows:

level project module object attribute
attrdef attrtype links

type pre post
event open read close save modify sync
attribute(trigger)
Declaration

string attribute (Trigger t)

Operation

Returns the name of the attribute to which trigger t applies, (if there is one); otherwise, returns null.

attrdef(trigger)

Declaration
AttrDef attrdef (Trigger t)

Operation

Returns the name of the attribute about to be saved for attribute pre-save triggers. For pre-open attribute triggers, returns

null.

current(trigger)

Declaration

Trigger current ()

Operation

Gets the cutrent trigger handle in persistent trigger code.

dxl(trigger)

Declaration
string dx1l(Trigger ¢t)

DXL Reference Manual

789

Operation

Returns the DXL code associated with trigger t.

kind
Declaration
string kind(Trigger t)
Operation
Returns the kind of trigger t: one of dynamic, stored orbuiltin.
levelModifier
Declaration
string levelModifier (Trigger t)
Operation
Returns the module level modifier of trigger ¢, which can be one of the following values:
"E" formal module
"L link module
"D" descriptive module
name(trigger)
Declaration
string name (Trigger t)
Operation
Returns the name of trigger t.
object(trigger)

Declaration
string object (Trigger ¢t)

Object object (Trigger t)

DXL Reference Manual

790

module

Declaration
Module module (Trigger t)
string module (Trigger ¢t)

Module module (Trigger t, int unused)

Operation
Fetches the module associated with the specified trigger.

The notion of associated module is as follows:

Trigger Returns...

Pre-open module and post-close ~ Normally a NULL module is returned. When a non-null
module triggers module is returned, it will be the module against which this
trigger last fired.

Post-open module trigger The current version module or null is returned. When a
baseline is opened, this perm will return the current version
of the module only when that current version has been
separately loaded.

Pre-close module trigger The current version module or null is returned. When a
baseline is closed, this perm will return the current version of
the module only when that current version has been
separately loaded.

Data-related triggers within a The tree where the data resides.

module (object and attribute

open/sync, and so on) Note: Data with a baseline will return the baseline
module.

For the following triggers, the associated module is the module containing the data (this will be a baseline when the data is
in a baseline):

* object attribute, pre-save
* object attribute, post-save
e link attribute, pre-save

* link attribute, post-save

The third form is as Module module (Trigger), but this variant will return baselined modules when a module-level
trigger is running against a baseline of a module. For non-module triggers, the returned module is the same as Module
module (Trigger).

The unused integer parameter should be 0.

DXL Reference Manual

791

version

Declaration

ModuleVersion version(Trigger t)

Operation

Returns the version information pertaining to the specified trigger. The returned value will be null in the case that version
information is not appropriate to the trigger.

It is not currently possible to associate a trigger with a specific module version, and thus only executing triggers have an
associated version.

link
Declaration
Link link(Trigger ¢t)
Operation
When a trigger fires because of an operation on a link, for example modification of an attribute) this perm provides access
to the corresponding link. In all other cases null is returned.
value
Declaration
void value (Trigger t, Buffer b)
Operation
Similar to string value (Trigger), but returns in buffer the RTF, inclusive of any OLE objects, of the new value
(where that is appropriate).
The creation and deletion of b is the responsibility of the user.
priority

Declaration
int priority(Trigger t)

Operation

Returns the priority of trigger t. Lower numbers have higher priority.

DXL Reference Manual

792

trigger status

A trigger status can be one of the following values:
trigPreConPass

trigPreConFail

trigRunOK

trigError

These constants are of type TriggerStatus. They are used with the set function. They are assigned to persistent
pre-event triggers to set a return condition.

set(trigger status)

Declaration

void set (TriggerStatus ts)

Operation

Sets a return condition in the DXL code assigned to persistent pre-event triggers. Possible values are: trigPreConPass,
trigPreConFail, trigRunOK, and trigError.

Example

Trigger tl = trigger ("tl", module->object->"1", pre, modify, 10, "#include
<trigger.dxl>")

In your trigger.dxl code, include one of the following set functions:
* set(trigPreConPass) - This causes the event that is associated with the trigger to pass always.
* set(trigPreConFail) - This causes the event that is associated with the trigger to fail always.

If the trigPreConFail value is used, then the object that is associated with the trigger event cannot be modified.

stored

Declaration

string stored(Trigger ¢t)

Operation

Returns the name of the module where trigger t is stored.

DXL Reference Manual

793

scope

Declaration
string scope (Trigger t)

Item scope (Trigger t)

Operation

Returns the item (or its unqualified name) to which the specified trigger applies. If the item is a project, then the trigger
applies to all modules within the project. For static triggers, this returns the same as the stored () perm.

value

Declaration

string value (Trigger t)

Operation

Similar to string value (Trigger), but returns the value being proposed for attribute modification by trigger t.

Triggers review

The following tables show what information is available to triggers of various types.

DXL Reference Manual

794

Dynamic triggers

kind dynamic dynamic dynamic dynamic dynamic dynamic dynamic dynamic dynamic dynamic
level module module object object attribute module module object object attribute
type pre pre pre pre pre post post post post post
event open close open sync save open close open sync save
priority yes yes yes yes yes yes yes yes yes yes
attribute no no no no yes' no no no no yes'
levelModifier no no no no no no no no no no
name yes? yes? yes? yes? yes? yes? yes? yes? yes? yes?
string object no no yes yes yes no no yes yes yes
string no no no no no no no no no no
module

value no no no no yes no no no no yes
dxl no no no no no no no no no no
Module no yes yes yes yes no yes yes yes yes
module

Object no no yes yes yes no no yes yes yes
object

attrdef no no no no yes no no no no yes

1 Only if trigger is on a named attribute.

2 Trigger name generated by system

DXL Reference Manual

Persistent triggers

kind stored stored stored stored stored stored stored stored stored stored
level module module object object attribute module module object object attribute
type pre pre pre pre pre post post post post post
event open close open sync save open close open sync save
priority yes yes yes yes yes yes yes yes yes yes
attribute no no no no yes® no no no no yes®
levelModifier no no no no no no no no no no
name yes yes yes yes yes yes yes yes yes yes
string object no no yes yes yes no no yes yes yes
string yes yes yes yes yes yes yes yes yes yes
module

value no no no no yes no no no no yes
dxl yes yes yes yes yes yes yes yes yes yes
Module no yes yes yes yes no yes yes yes yes
module

Object no no yes yes yes no no yes yes yes
object

attrdef no no no no yes no no no no yes

3 Only if trigger is on a named attribute

Drag-and-drop trigger functions

This section defines functions that are used to setup drag or drop trigger callback functions, as well as those functions which
can be used within them.

createDropCallback

Declaration

void createDropCallback (int fmt,

int type,

void cb (Trigger),

Trigger t)

DXL Reference Manual

795

796

Operation

When used in a callback for drag trigger t, this registers a DXL callback functions cb to be run when the drop target
application requests data in the specified clipboard format fmt and media type with a value included in the bitmap value
type. The fmt and type argument should match the format of data which is supplied by the callback function using
setDropString (), setDropList () etc.

registeredFormat

Declaration

int registeredFormat (string formatName)

Operation

Returns the format ID for the specified format name. If the named format has not already been registered, then this perm

registers it.

dropDataAvailable

Declaration
bool dropDataAvailable (format, int type, Trigger t)

Operation

Returns true if dragged data is available in the specified clipboard format, which may be specified as a string registered
format name, or a format ID number. The type argument is used to specify which media formats should be checked for.

droppedString

Declaration
string droppedString(format, Trigger t[, bool unicode])

Operation

When used in a callback function for a drop event trigger t, this returns any text supplied in the specified clipboard format
by the data source application. The format argument can be either the name of a registered clipboard format (a string), or
a format ID (int). If the unicode argument is specified and is true, and the clipboard format is a registered (non-standard)
clipboard format, then the string data in the clipboard will be assumed to be in wide-char Unicode format.

droppedAttrTextAvailable

Declaration
bool droppedAttrTextAvailable(string attr, Trigger t)

DXL Reference Manual

797

Operation

When used in a callback function for a drop event trigger t, this function tells whether a dragged text value is available for
the named Rational DOORS Object attribute at tr from the drag source object. Returns true when the drag source is
another Rational DOORS client, and the at tr is an Object attribute in the drag source module whose value can be
expressed as a string, and to which the current user in the source has read access.

droppedAttributeText

Declaration
string droppedAttributeText (string attr, Trigger t)

Operation

When used in a callback function for a drop event trigger t, if the drag source is a Rational DOORS client this returns the
text form of the named Object attribute at t r. Returns an empty (null) string when there is no accessible text value

corresponding to the named attribute.

droppedAttrRichTextAvailable

Declaration
bool droppedAttrRichTextAvailable (string attr, Trigger t)

Operation

When used in a callback function for a drop event trigger t, this tells whether a dragged Rich Text value (excluding OLE
objects) is available for the named Rational DOORS Object attribute at tr from the drag source object. This returns true
when the drag source is another Rational DOORS client, and the named attribute is an Object attribute with base-type Text
or String in the drag source module, and to which the current user in the source has read access.

droppedAttributeRichText

Declaration
string droppedAttributeRichText (string attr, Trigger ¢t)

Operation

When used in a callback function for a drop event trigger t, this returns the Rich Text value (excluding OLE objects) of the
named Object attribute at t r, when the drag source is a Rational DOORS client. This returns an empty (null) string when
the named attribute is not of base type String or Text.

droppedAttrOLETextAvailable

Declaration
bool droppedAttrOLETextAvailable(string attr, Trigger t)

DXL Reference Manual

798

Operation

When used in a callback function for a drop event trigger t, this tells whether a dragged Rich Text value (including OLE
objects) is available for the named Rational DOORS Object attribute at tr from the drag source object. This returns true
when the drag source is another Rational DOORS client, and the named attribute is an Object attribute with base-type Text
in the drag source module, and to which the current user in the source has read access.

droppedAttributeOLEText

Declaration
string droppedAttributeOLEText (string attr, Trigger t)

Operation

When used in a callback function for a drop event trigger t, this returns the Rich Text form (including OLE objects) of the
named Object attribute at tr, when the drag source is a Rational DOORS client. This returns an empty (null) string when
the named attribute is not of base type Text.

draggedObjects

Declaration
Skip draggedObjects ()

Operation

This returns a Skip list of the objects in the selection where the latest drag has begun. Its return value is only valid within the
context of a drag trigger or a drop callback registered by a drag trigger.

droppedList

Declaration
Skip droppedList (format, Trigger t)

Operation

When used in a callback function for a drop event trigger t, this returns any list of strings supplied in the specified clipboard
format by the data source application. The format argument can be either the name of a registered clipboard format (a

string), or a format ID (int).

The data should be supplied as in the standard CF_HDROP format.

setDropString

Declaration

string setDropString(int fmt, Trigger t, string s [, bool unicode])

DXL Reference Manual

799

Operation

When used in a callback for a drag trigger t, or in a drop callback function registered by createDropCallback (),
this passes the string s to the drop target in the specified clipboard format fmt, in TYMED_HGLOBAL media type. If
fmt is a non-standard registered clipboard format and unicode is specified and is true, then the string data will be
supplied in wide-char Unicode format.

Returns null on success, and an error string on failure.

setDropList

Declaration
string setDroplist (int fmt, Trigger t, Skip sk)
Operation

When used in a callback for a drag trigger t, or in a drop callback function registered by createDropCallback (),
this passes the strings in the supplied Skip list to the drop target in the specified clipboard format fmt, in
TYMED_HGLOBAL media type, as supplied in the standard CF_HDROP clipboard format.

Returns null on success, and an error string on failure.

insertDroppedPicture

Declaration
bool insertDroppedPicture (Object, Trigger t, int fmt[, int typel)

Operation

When used in a callback for a drop trigger t, and when the specified Object is an editable Picture object, and if picture data
is available in the specified format fmt and type, then this replaces the Object’s picture with the picture from the drag
source.

If typeis TYMED_MFPICT or fmt is CFE_METAFILEPICT, then Windows Metafile data will be expected. Otherwise,
if fmt is CF_BITMAP then a Device Dependent Bitmap is expected. Otherwise, a Device Independent Bitmap is
expected.

The default value for type is TYMED_MFPICT for CF_METAFILEPICT clipboard format, and TYMED_GDI for
CF_BITMAP, CF_DIB and all other formats.

Returns true on success, false on failure.

saveDroppedPicture

Declaration

bool saveDroppedPicture (Trigger t, string filename, int fmt[, int typel)

DXL Reference Manual

800

Operation

When used in a callback for a drop trigger t, this saves any picture data available in the specified format £mt and data type
type in the file specified by the full path filename.

If typeis TYMED_MFPICT or fmt is CF_METAFILEPICT then Windows Metafile data will be expected. Otherwise,
it fmt is CF_BITMAP then a Device Dependent Bitmap is expected. Otherwise, a Device Independent Bitmap is
expected.

The default value for type is TYMED_MFPICT for CF_METAFILEPICT clipboard format, and TYMED_GDI for
CF_BITMAP, CF_DIB and all other formats.

Returns true on success, false on failure.

Example

The following two examples, when run in the global context, define drag-and-drop triggers that give some control over the
dragging and dropping of data to and from Rational DOORS clients.

Drag trigger example:
/*
dragTrigger.inc
*/

// Drop callback to supply Object Text in CF OEMTEXT format.
void dropCB (Trigger t)
{

Object o = object (t)

setDropString (CF_OEMTEXT, t, o."Object Text" "")

string formatName = "RichEdit Text and Objects"

// Test drop callback
void testCB(Trigger t)

{
Object o = object (t)

setDropString (registeredFormat (formatName), t, o."Object Text" "")

// Drag trigger: Register callbacks to set CF_OEMTEXT and CF_HDROP
// format data.

bool preDrag(Trigger t)

DXL Reference Manual

Object o = object (t)
createDropCallback (CF_OEMTEXT, TYMED HGLOBAL, dropCB, t)
createDropCallback (registeredFormat (formatName), TYMED HGLOBAL, testCB,

return true

trigger (project->all->module->all->object->all,drag,l,preDrag)

Drop trigger example:

/*

dropTrigger.inc

*/

// RAppend registered format drag-drop data info to the buffer for display.

void appendData (Buffer &b, string fmtName, Trigger t, bool unicode)

{

int tymed

int types = 0

for (tymed = TYMED HGLOBAL; tymed <= TYMED ENHMF; tymed *= 2)

{
if (dropDataAvailable (fmtName, tymed, t))

{
types |= tymed

}
if (types > 0)
{

int fmt = registeredFormat (fmtName)
b += fmt " (" fmtName ", " types ") :\n"
b += " " droppedString (fmtName, t,unicode) "\n"

801

t)

DXL Reference Manual

802

void appendText (Buffer &b, string attrName, bool isSpecial, Trigger t)
{
if (droppedAttrTextAvailable (attrName,t,isSpecial))
{
b += "Attribute Text: " attrName ":\n"

b += " " droppedAttributeText (attrName,t,isSpecial) "\n"

void appendRTF (Buffer &b, string attrName, Trigger t)
{
if (droppedAttrRichTextAvailable (attrName,t))
{
b += "Attribute RichText: " attrName ":\n"

b += " " droppedAttributeRichText (attrName,t) "\n"

void appendOLE (Buffer &b, string attrName, Trigger t)
{
if (droppedAttrOLETextAvailable (attrName,t))
{
b += "Attribute OLE Text: " attrName ":\n"

b += " " droppedAttributeOLEText (attrName,t) "\n"

// Custom trigger: Displays a dialog listing available clipboard formats
// from drag and drop, and displays any string data and list data.

// Prompts the user to insert any available picture-format data if the
// module is open for edit.

bool preDrop (Trigger t)

DXL Reference Manual

803

if (!confirm("Run custom trigger?"))
{
return true
}
Buffer b = create
Object o = object (t)
int fmt
int types
// Check for available data in standard clipboard formats.
for (fmt = 1; fmt < CF MAX; fmt++)
{
int tymed = TYMED HGLOBAL
types = 0
for (tymed = TYMED HGLOBAL; tymed <= TYMED ENHMF; tymed *= 2)
{
if (dropDataAvailable (fmt, tymed,t))
{
types |= tymed

}
if (types > 0)
{
b += fmt " (" clipboardFormatName (fmt) ", " types ") :\n"
if (fmt == CF_HDROP)
{
Skip skp = droppedList (fmt,t)
string s
for s in skp do
{
b+=" - " s "\n"
}
delete skp

DXL Reference Manual

804

DXL Reference Manual

else

{

else

if (fmt == CF DIB || fmt == CF BITMAP || fmt == CF METAFILEPICT)

if (isEdit (module o) && confirm("Insert picture format "
clipboardFormatName (fmt) "?2"))

{

if

{

(formatUNKNOWN != getPictFormat (o))

// Dropping onto a picture object -
// replace the existing picture
insertDroppedPicture (o, t, fmt)

refresh (module o)

else

// Not a picture object: append a new one.
string filename = tempFileName ()
int tymed = TYMED GDI
int picFmt = formatBMP
if (fmt == CF METAFILEPICT)
{
tymed = TYMED MFPICT
picFmt = formatWMF
}
if (saveDroppedPicture(t, filename, fmt, tymed))
{
insertPictureFileAfter (filename, picFmt, o)
deleteFile (filename)

refresh (module o)

805

b += " " droppedString (fmt,t) "\n"

if (droppedAttrTextAvailable ("Object Heading",t))
{
if (confirm("Replace Object Heading?"))

{
0."Object Heading" = droppedAttributeText ("Object Heading",t)

}
if (droppedAttrRichTextAvailable ("Object Text",t))
{

if (confirm("Replace Object Rich Text?"))

{
0."Object Text" = droppedAttributeRichText ("Object Text",t)

if (droppedAttrOLETextAvailable ("Object Text",t))
{
if (confirm("Replace Object Rich Text with OLE?"))

{
0."Object Text" = droppedAttributeOLEText ("Object Text",t)

// Check for specific registered clipboard formats.
appendData (b, "DOORS Object URL",t,false)
appendData (b, "RichEdit Text and Objects", t, false)
appendText (b, "Object Heading", false, t)
appendText (b, "Object Text", false,t)

appendText (b, "Last Modified Time", true,t)

DXL Reference Manual

806

appendData (b, "UniformResourcelLocator", t, false)

b += "\nonto Object " o."Absolute Number" ""

// Display the results.

DB thedb = create (module (o), "Dropped data")

DBE thetext = text (thedb,"",stringOf (b),200, true)
block thedb

destroy thedb

delete b

return false

trigger (project->all->module->all->object->all,drop,1l,preDrop)

DXL Reference Manual

Chapter 31
Page setup functions

This chapter describes the page setup functions.
* Page attributes status

* Page dimensions

e Document attributes

* Page setup information

* Page setup management

Page attributes status

This section describes the page setup functions that return the status of a page attribute or set it. They are intended for use
in exporters.

In each case there are two versions of the function that gets the status of a page attribute: one for a specific page; the other
with no page specified, which operates on the current page. Similatly, there are two versions of each function that sets the
status of a page attribute. The functions that get or set data for a specific page use the data type PageLayout.

Get page properties status

Declaration

bool pageChangeBars ([PageLayout myPageSetup])
bool pagePortrait ([Pagelayout myPageSetup])
bool pageRepeatTitles ([Pagelayout myPageSetup])
bool pageTitlePage ([PagelLayout myPageSetup])

where:

myPageSetup Specifies a page setup

Operation

Returns true for the properties described below on myPageSetup, or if myPageSetup is omitted, on the current
page; otherwise, it returns false.

pageChangeBars Shows change bars

pagePortrait Is portrait

DXL Reference Manual

807

808

pageRepeatTitles Repeats titles on every page

pageTitlePage Shows a title page

Set page properties status

Declaration

bool pageChangeBars ([PagelLayout myPageSetup,]
bool expression)

bool pagePortrait ([PagelLayout myPageSetup,]
bool expression)

bool pageRepeatTitles ([PagelLayout myPageSetup,]
bool expression)

bool pageTitlePage ([PagelLayout myPageSetup,]
bool expression)

where:
myPageSetup Specifies a page setup
expression Is an expression
Operation

Sets the properties described below on myPageSetup, or if myPageSetup is omitted, on the current page. Returns
true if the operation succeeds; otherwise, returns false.

Argument expression Evaluates true Evaluates false
pageChangeBars Shows change bars Hides change bars
pagePortrait Sets portrait Sets landscape
pageRepeatTitles Repeats titles on every page Shows titles on first page only
pageTitlePage Shows a title page Suppresses a title page

Page dimensions

This section describes the page setup functions that return or set the size of a page dimension.

In each case there are two versions of the function that gets the size of a page dimension: one for a specific page; the other
with no page specified, which operates on the current page. Similarly, there are two versions of each function that sets the
size of a page dimension. The functions that get or set dimensions for a specific page use the data type PageLayout.

DXL Reference Manual

809

Get page dimension

Declaration

int pageSize ([PagelLayout myPageSetup])

int pageWidth ([Pagelayout myPageSetup])

int pageHeight ([PagelLayout myPageSetup])

int pageTopMargin ([PagelLayout myPageSetup])
int pageBottomMargin ([PagelLayout myPageSetup])
int pageleftMargin ([PagelLayout myPageSetup])
int pageRightMargin ([PagelLayout myPageSetup])

where:

myPageSetup Specifies a page setup

Operation

Returns the size as described below on myPageSetup, or if myPageSetup is omitted, on the current page.

pageSize Page size indicated by 0 (A4), 1 (A3), 2 (A5), 3 (legal),
4 (letter), 5 (custom)

pageWidth Page width in mm

pageHeight Page height in mm

pageTopMargin Top margin in mm

pageBottomMargin Bottom margin in mm

pageleftMargin Left margin in mm

pageRightMargin Right matgin in mm

Set page dimension

Declaration

bool pageSize ([Pagelayout myPageSetup, |
int dimension)

bool pageWidth ([PagelLayout myPageSetup, |
int dimension)

bool pageHeight ([Pagelayout myPageSetup, |
int dimension)

DXL Reference Manual

810

bool pageTopMargin ([PagelLayout myPageSetup,]
int dimension)

bool pageBottomMargin ([PageLayout myPageSetup, |
int dimension)

bool pageleftMargin ([PageLayout myPageSetup,]
int dimension)

bool pageRightMargin ([Pagelayout myPageSetup,]
int dimension)

where:
myPageSetup Specifies a page setup
dimension Specifies a dimension
Operation

Sets the size of the dimension described below on myPageSetup, or if myPageSetup is omitted, on the current page.
Returns true if the operation succeeds; otherwise, returns false.

pageSize Page size indicated by 0 (A4), 1 (A3), 2 (A5), 3 (legal),
4 (letter), 5 (custom)
pageHeight Page height in mm
pageWidth Page width in mm
pageTopMargin Top margin in mm
pageBottomMargin Bottom margin in mm
pageleftMargin Left margin in mm
pageRightMargin Right matgin in mm
Example
const int paperA4 = 0,
paperA3 = 1,
paperAS5 = 2,
paperlegal = 3

’
paperletter = 4,
paperCustom = 5

if (pageSize == paperCustom) {
// do something specific

DXL Reference Manual

811

Document attributes

This section describes the page setup functions that return or set a document attribute. These are features of a complete
document rather than a page.

For pageBreakLevel, pageTOCLevel and pageHeaderFooter, there are two versions of the function that gets
the document attribute: one for a specific page; the other with no page specified, which operates on the current page.
Similarly, there are two versions of these functions that set the document attribute. The functions that get or set data for a
specific page use the data type PageLayout. Note that a statement such as ‘pageBreakLevel = 1’ isnot
supported.

pageBreakLevel, pageTOCLevel(get)

Declaration
int pageBreakLevel ([PageLayout myPageSetup])

int pageTOCLevel ([Pagelayout myPageSetup])

where:
myPageSetup Specifies a page setup
Operation
Returns the document attribute as described below on myPageSetup, or if myPageSetup is omitted, on the current
page.
pageBreakLevel Heading level at which a page break is automatically inserted
pageTOCLevel Lowest heading level included in table of contents

pageBreakLevel, pageTOCLevel(set)

Declaration

bool pageBreakLevel ([PagelLayout myPageSetup, |
int level)

bool pageTOCLevel ([PagelLayout myPageSetup,]
int lIevel)

where:
myPageSetup Specifies a page setup
level Specifies a level

DXL Reference Manual

812

Operation

Sets the document attribute described below on myPageSetup, or if myPageSetup is omitted, on the current page.
Returns true if the operation succeeds; otherwise, returns false.

pageBreakLevel Heading level at which a page break is automatically inserted

pageTOCLevel Lowest heading level included in table of contents

pageHeaderFooter(get)

Declaration

string pageHeaderFooter ([Pagelayout myPageSetup,
int fieldNumber)

where:
myPageSetup Specifies a page setup
fieldNumber Identifies a header or footer field
Operation
Returns the header or footer string defined for myPageSetup, or if myPageSetup is omitted, for the current page, as
follows:
fieldNumber for page type
body contents title
left header 0 6 12
center header 1 7 13
right header 2 8 14
left footer 3 9 15
center footer 4 10 16
right footer 5 11 17

pageHeaderFooter(set)

Declaration

bool pageHeaderFooter ([PagelLayout myPageSetup,]
int fieldNumber, string s)

DXL Reference Manual

813

where:

myPageSetup Specifies a page setup

fieldNumber Identifies a header or footer field

s Is the string to be placed in the specified field
Operation

Places the header or footer string in the specified field (see the pageHeaderFooter (get) function) on
myPageSetup, or if myPageSetup is omitted, on the current page. Returns t rue if the operation succeeds;
otherwise, returns false.

pageExpandHF

Declaration

string pageExpandHF (string HF,
string thisPage,
string maxPage)

Operation

Takes a header or footer string, HF, a current page number as a string, and a maximum page number as a string, and returns
the string to be printed. Page numbers are passed as strings to permit roman and other numerals.

Typically, the HF value is returned from the pageHeaderFooter (get) function.

The options ate:

&N Current page number, for a contents page in Roman numerals; not available on a
title page

&C Total page count; not available for title page or contents pages

&M Current module name

&P Project name

&V Current version of module

&U User name

&D Session date

&T Time of printing

&A Rational DOORS product name

&B Rational DOORS product version

DXL Reference Manual

814

Example
This example prints Page 1 of 10:

print pageExpandHF ("Page &N of &C", "1", "10")

Page setup information

This section describes the page setup functions that return or set specific information.

For pageColumns, and pageFormat, there are two versions of the function that gets the layout information: one for a
specific page; the other with no page specified, which operates on the current page. Similarly, there are two versions of each
function that sets the layout information. The functions that get or set layout information for a specific page use the data
type PageLayout.

Setting current page setup

The assignment operator = can be used as shown in the following syntax:
current = Pagelayout setup

Makes setup the current page setup, provided the user has read access to the page setup. See also, the current (page
setup) function.

For large DXL programs, when you set the current page setup, cast the current on the left hand side of the assignment to
the correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into
memory quicker. It does not affect the subsequent execution of your program. So:

current = newCurrentPageSetup
becomes
(current ModuleRef) = newCurrentPageSetup

Note that this cast only works for assignments to current. It is not useful for comparisons or getting the value of the current
page setup.

current(page setup)

Declaration

Pagelayout current ()

Operation

Returns the current page setup.

DXL Reference Manual

815

pageColumns, pageFormat(get)

Declaration
int pageColumns ([PageLayout myPageSetup])
int pageFormat ([Pagelayout myPageSetup])

where:

myPageSetup Specifies a page setup

Operation

Returns the information described below on myPageSetup, or if myPageSetup is omitted, on the current page.

pageColumns Column style indicated by 0 (filled), 1(table), 2 (not
marked)
pageFormat Page format indicated by 0 (columns), 1 (book)

pageColumns, pageFormat(set)

Declaration
bool pageColumns ([PageLayout myPageSetup,]
int style)
bool pageFormat ([PagelLayout myPageSetup,]
int style)
where:
myPageSetup Specifies a page setup
style Specifies a style
Operation

Sets the information described below on myPageSetup, ot if myPageSetup is omitted, on the current page. Returns
true if the operation succeeds; otherwise, returns false.

pageColumns Column style indicated by 0 (filled), 1(table), 2 (not
marked)
pageFormat Page format indicated by 0 (columns), 1 (book)

DXL Reference Manual

816

pageTitlePage

Declaration
bool pageTitlePage ()
bool pageTitlePage (PageLayout)

Operation

These functions allow the user to get the signature page setting for either the curtent page layout or the specified one.

pageSignaturePage

Declaration
bool pageSignaturePage (bool)
bool pageSignaturePage (PagelLayout, bool)

Operation

These functions allow the user to set the signature page setting for either the current page layout or the specified one.

pagelncludeFilters

Declaration
bool pageIncludeFilters ([PageLayout] [, bool])

Operation

These functions allow the user to either set the Include filter criteria on title page setting, or, if a boolean parameter is

not supplied, obtain the current setting.

If a PageLayout is not supplied, the operation will be performed on the current PageLayout.

pagelncludeSort

Declaration
bool pageIncludeSort ([PagelLayout] [, booll])

Operation

These functions allow the user to either set the Include sort criteria on title page setting, or, if a boolean parameter is not

supplied, obtain the current setting.

If a PageLayout is not supplied, the operation will be performed on the current PageLayout.

DXL Reference Manual

817

Page setup management

This section defines the functions that allow you to manage page setups.

create

Declaration

Pagelayout create (string myPageSetup)

Operation
Creates the page setup myPageSetup.

delete

Declaration
bool delete (Pagelayout myPageSetup)

Operation

Deletes the page setup my PageSetup. Returns t rue if the operation succeeds; otherwise, returns false.

isValidName

See “isValidName,” on page 298.

pagelLayout

Declaration
Pagelayout pagelayout (string myPageSetup)

Operation
Returns the page setup of myPageSetup.

pageName

Declaration
string pageName ([PagelLayout myPageSetup])

Operation

Returns the name of the page setup myPageSetup, or if myPageSetup is omitted, of the current page.

DXL Reference Manual

818‘

save(page setup)

Declaration

bool save (PagelLayout myPageSetup)

Operation

Saves the page setup myPageSetup. Returns true if the operation succeeds; otherwise, returns false.

for setup name in setups

Syntax

for setupName in pageSetups database do {

}

where:

setupName is a string variable

Operation

Assigns the string setupName to be each successive page setup name found in the database.
Example

string setupName

for setupName in pageSetups database do {
print setupName "\n"

DXL Reference Manual

819

Chapter 32

Tables

This chapter describes the table handling functions, many of which are useful for making exporters.

* Table concept

¢ Table constants

e Table management

* Table manipulation

¢ Table attributes

Table concept

In Rational DOORS, a table is an object hierarchy displayed in the form of a table.

The table’s top level is referred to as the table header object; for each row it has a sub-object, called a row object. These row
objects, in turn, have sub-objects, which are the table cells.

Table constants

You can use the column alignment constants of type Justification for tables. For further information, see “Column
alighment constants,” on page 690.

You define table borders using constants of type TableBorderStyle and TableBorderPosition.

Declaration

const

const

const

const

const

const

const

TableBorderStyle noborder
TableBorderStyle solidBorder
TableBorderStyle dottedborder
TableBorderPosition left
TableBorderPosition right
TableBorderPosition top

TableBorderPosition bottom

Operation

These constants are used to define tables with the setCellBorder and setAl1CellsBorder functions.

DXL Reference Manual

820 ‘

Table management

This section defines the table management functions.

table(create)

Declaration

Object table (Module m,
int rows,
int cols)

Object table (Object o,
int rows,
int cols)

Object table(before (Object o),
int rows,
int cols)

Object table (below (Object o),
int rows,
int cols)

Object table(last (below(Object o)),
int rows,
int cols)

Operation

The first form creates a table of size rows, cols as the fitst object in a module.

The second form creates a table of size rows, cols at the same level and immediately after object o.
The third form creates a table of size rows, cols at the same level and immediately before the object o.
The fourth form creates a table of size rows, cols as the first child of the object o.

The fifth form creates a table of size rows, cols as the last child of the object o.

Example

// create as first object
Object params = table(current Module, 10, 3)

// create at same level and after object
Object analysis = table(current object, 4, 4)

// create at same level and before object
Object revisions = table(before first current,
noOfChanges, 3)

DXL Reference Manual

821

// create as first child
Object wordCount = table (below checkedObject,
noOfWords, 2)

table

Declaration

bool table (Object o)

Operation

Returns true if O is a table header object; otherwise, returns false.

Use this function in an exporter that does not handle tables.

row

Declaration

bool row (Object o)

Operation

Returns true if o is a row header object; otherwise, returns false.

cell

Declaration
bool cell (Object o)

Operation

Returns true if o is a table cell; otherwise, returns false.

tableContents(get)

Declaration
bool tableContents (Module m)

Operation

Gets the status of tables in the specified module. It returns true for tables shown or false for tables hidden.

DXL Reference Manual

822

Example

if (tableContents current Module &&
table current Object) {
dumpTable (current, outStream)

tableContents(set)

Declaration

void tableContents (bool expression)

Operation

Shows or hides tables in the current module, if expression evaluates to true or false, respectively.

deleteCell, deleteColumn, deleteRow, deleteTable

Declaration

string deleteCell (Object tableCell)
string deleteColumn (Object tableCell)
string deleteRow (Object tableCell)
string deleteTable (Object tableObj)

Operation
Deletes the cell, column, row, or table containing tableCell, which must be a table cell.

If successful, returns a null string. Otherwise, returns and error message. If the object is not a table cell, the call fails but no

error is reported.

undeleteCell, undeleteColumn, undeleteRow, undeleteTable

Declaration

string undeleteCell (Object tableCell)
string undeleteColumn (Object tableCell)
string undeleteRow (Object tableCell)

string undeleteTable (Object tableObj)

Operation
Undeletes the cell, column, row, or table containing tableCell, which must be a table cell.

If successful, returns a null string. Otherwise, returns and error message. If the object is not a table cell, the call fails but no

error is reported.

DXL Reference Manual

823

for row in table

Syntax
for ro in table (Object o) do {
}
where:
ro is a row variable of type Object
o is an object of type Object
Operation

Assigns the cell variable ro to be each successive table row, returning row objects, which can be passed to the for cell
in row loop.

for cell in row

Syntax
for co in row(Object o) do {
}
where:
co Is a cell variable of type Object
o Is an object of type Object
Operation

Assigns the cell variable co to be each successive row cell.
This loop returns all cells in a row regardless of whether they are displayed (filtered or deleted).

To only return cells in the current display set, test each cell using isVisible (Object o).

Example 1
This outputs the identifiers of the table cells in the current table.
Object rowHead

for rowHead in table current Object do {
Object cell

DXL Reference Manual

824

for cell in row rowHead do {
print identifier cell "\n"

}
Example 2

This outputs the identifiers of the table cells in the current display set.
Object rowHead

for rowHead in table current Object do {
Object cell

for cell in row rowHead do {
if (isVisible cell)
print identifier cell "\n"

Table manipulation

This section defines functions for editing and manipulating tables.

appendCell

Declaration
Object appendCell (Object tableCell)

Operation
Appends a table cell after the given object, which must be a table cell.

If the user does not have permission to create cells, or the specified object is not a table cell, a run-time error occurs.

appendColumn(table)

Declaration
Object appendColumn (Object tableCell)

Operation
Appends a table column after the given object, which must be a table cell.

If the user does not have permission to create columns, or the specified object is not a table cell, a run-time etror occurs.

DXL Reference Manual

825

appendRow

Declaration
Object appendRow (Object tableCell)

Operation
Appends a table row after the given object, which must be a table cell.

If the user does not have permission to create rows, or the specified object is not a table cell, a run-time error occurs.

insertCell

Declaration
Object insertCell (Object tableCell)

Operation

Inserts a table cell before the given object, which must be a table cell.

Example
Object o = current Object

if (cell o) {
Object newCell = insertCell o
newCell."Object Text" = "New cell"
} else {
ack "current object is not a cell"

insertColumn(table)

Declaration

Object insertColumn (Object tableCell)

Operation

Inserts a table column before the given object, which must be a table cell.

Example

Object o = current Object

DXL Reference Manual

826

if (cell o) {

Object newColumn = insertColumn o
newColumn."Object Text" = "New column"
} else {

ack "current object is not a column"

insertRow

Declaration

Object insertRow (Object tableCell)

Operation

Inserts a table row above the given object, which must be a table cell.

Example
Object o = current Object

if (cell o) {
Object newRow = insertRow o
newRow."Object Text" = "New row"
} else {
ack "current object is not a row"

getTable

Declaration
Object getTable (Object tableCell)

Operation

Returns the header object of the table containing tableCel 1. This object is not visible. It is used in calls to functions that
set all the cells in a table.

getRow

Declaration
Object getRow (Object tableCell)

Operation

Returns the header object of the row containing tableCell. This object is not visible. It is used when you want to do
something to all the objects in a row.

DXL Reference Manual

827

Example
Object tableCell
Object rowObject = getRow(aCellIntheRow)

for tableCell in rowObject dof{
// do something to the cell

}

getCellAlignment

Declaration

Justification
getCellAlignment (Object tableObject)

Operation

Returns the alignment of cells in tableObject.

getCellWidth

Declaration
int getCellWidth (Object tableCell)

Operation
Returns the width in pixels of tableCell.

getCellShowChangeBars

Declaration
bool getCellShowChangeBars (Object tableCell)

Operation

If tableCell is set to show change bars, returns t rue; otherwise, returns false.

getCellShowLinkArrows

Declaration
bool getCellShowLinkArrows (Object tableCell)

Operation

If tableCell is set to show link arrows, returns t rue; otherwise, returns false.

DXL Reference Manual

828

getShowTableAcrossModule

Declaration
bool getShowTableAcrossModule (Object tableCell)

Operation

If tableCell is set to show the table across the module, instead of just in the main column, retutns true; otherwise,

returns false.

setAllCellsAlignment

Declaration

void
setAllCellsAlignment (Object tableObject,
Justification alignment)

Operation

Sets all cells alighment within tableObject to have alignment. The tableObject argument must be the object
returned by a call to the getTable function.

setAllCellsBorder

Declaration
void setAllCellsBorder (Object tableObject,

TableBorderPosition edge,
TableBorderStyle style)
Operation
Sets all specified border edges within tableObject to have the specified style.

setAllCellsShowChangeBars

Declaration

void
setAllCellsShowChangeBars (Object tableObject,
bool show)

Operation

If showis true, sets the all the cells in tableObject to show change bars. Otherwise, sets all the cells to hide change
bars. The tableObject argument must be the object returned by a call to the get Table function.

DXL Reference Manual

829

setAllCellsShowLinkArrows

Declaration

void
setAllCellsShowLinkArrows (Object tableObject,
bool show)

Operation

If show is true, sets the all the cells in tableObject to show link arrows. Otherwise, sets all the cells to hide link
arrows. The tableObject argument must be the object returned by a call to the getTable function.

setAllCellsWidth

Declaration

void setAllCellsWidth (Object tableObject,
int width)

Operation

Sets all the cells in tableObject to have width in pixels. The tableObject argument must be the object returned
by a call to the getTable function.

setCellAlignment

Declaration

void setCellAlignment (Object tableCell,
Justification alignment)

Operation

Sets cell alignment within tableCell to have alignment.

setCellBorder

Declaration

void setCellBorder (Object tableCell,
TableBorderPosition edge
TableBorderStyle style)

Operation

Sets the specified border edge to the specified style on the given cell.

DXL Reference Manual

830

setCellShowChangeBars

Declaration

void setCellShowChangeBars (Object tableCell,
bool show)

Operation

If show is true, sets the cell containing tableCell to show change bars. Otherwise, sets the cell to hide change bars.

setCellShowLinkArrows

Declaration

void setCellShowLinkArrows (Object tableCell,
bool show)

Operation

If showis true, sets the cell containing tableCell to show link arrows. Otherwise, sets the cell to hide link arrows.

setCellWidth
Declaration
void setCellWidth (Object tableCell,
int width)
Operation

Sets the cell containing tableCell to have width in pixels.

setColumnAlignment

Declaration

void setColumnAlignment (Object tableCell,
Justification alignment)

Operation

Sets the column containing tableCell to have alignment.

DXL Reference Manual

831

setColumnShowChangeBars

Declaration

void setColumnShowChangeBars (Object tableCell,
bool show)

Operation

If showis true, sets the column containing tableCell to show change bars. Otherwise, sets the column to hide
change bars.

setColumnShowLinkArrows

Declaration

void setColumnShowLinkArrows (Object tableCell,
bool show)

Operation

If showis true, sets the column containing tableCell to show link arrows. Otherwise, sets the column to hide link
arrows.

setColumnWidth

Declaration

void setColumnWidth (Object tableCell,
int width)

Operation

Sets the column containing tableCell to have width in pixels.

setRowWidth
Declaration
void setRowWidth (Object tableCell,
int width)
Operation

Sets the row containing tableCell to have width in pixels.

DXL Reference Manual

832

setShowTableAcrossModule

Declaration

void setShowTableAcrossModule (Object tableCell,
bool showTable)

Operation

If showTableis true, sets the table containing tableCell to show the table across the module, instead of just in the
main column. Otherwise, sets the table not to show across the module.

toTable

Declaration
void toTable (Object header)

Operation

Converts a three-level object hierarchy into a table.

Example

This loop function detects objects that have been imported from an imaginary format called XYZ as Rational DOORS 3.0
tables, and converts them into Rational DOORS native tables.

Object o = first current Module

while (!null o) {
string importType = 0."XYZ Type"

if ('table o) {

if (importType == "Table") {
toTable o
o = next sibling o

} else {

o = next o

Table attributes

This section defines the functions which deal with the attributes shown in tables.

Note that the display of attributes in tables objects is controlled through the reserved “Main Column Attribute” attribute.
Values of which can be assigned or obtained as per normal attributes, but with the addition of the “reserved” keyword e.g.
Object. (reserved “Main Column Attribute”) = “Object Heading”

DXL Reference Manual

833

useDefaultTableAttribute

Declaration
bool useDefaultTableAttribute (ViewDef vd)

void useDefaultTableAttribute (ViewDef vd, bool setting)

Operation

The first form returns true if the default table attribute is being used in the given view, otherwise it returns false. The second
form turns the use of the default table attribute in the given view on or off .

enableDefaultTableAttribute

Declaration
void enableDefaultTableAttribute (bool setting)

bool enableDefaultTableAttribute (Module)

Operation

The first form enables or disables the ability to specify a default table attribute in the current module. The second form
returns true if the use of a default table attribute is enabled in the given module, otherwise it returns false.

overrideTableAttribute

Declaration
void overrideTableAttribute (bool setting)

bool overrideTableAttribute (Module)

Operation

The first form sets a flag indicating that the specified default attribute for the current module should override the display
attribute for all tables in the module. Setting this value will have no effect if the Default Table Attribute option is not
enabled. The second form returns true if the Override Table Attribute option is enabled in the given module, otherwise it

returns false.

defaultTableAttribute

Declaration
void defaultTableAttribute (string AttrName)

string defaultTableAttribute (Module)

DXL Reference Manual

834

Operation

The first form sets the default table cell attribute on the cutrent module. If the name provided is not a valid attribute name,
then the default “Main Column” will be displayed. Setting this value will have no effect if the Default Table Attribute option
is not enabled. The second form returns the name of the Default Table Attribute for the given module.

Example

//This example re-saves the current view having set the default table attribute
//to be the Object Heading, with some verification along the way.

string curViewName = currentView (current Module)

View curView = view curViewName

ViewDef vd = get curView

string MyDefTableAttr = "Object Heading"

if ('enableDefaultTableAttribute (current Module)) {

enableDefaultTableAttribute (true)

defaultTableAttribute (MyDefTableAttr)

if (defaultTableAttribute (current Module) != MyDefTableAttr) {
print "An error occurred setting the default table attribute.\n"
} else {

useDefaultTableAttribute (vd, true)

if (!'useDefaultTableAttribute (vd)) {

print "An error occurred while activating the default table attribute on
the current view."

} else {

save (curView, vd)

DXL Reference Manual

835

Chapter 33

Rich text

This chapter describes the functions that allow manipulation of rich text.
* Rich text processing

* Rich text strings

* Enbhanced character support

* Importing rich text

* Diagnostic perms

Rich text processing

This section gives the syntax for operators, functions and a for loop, which can be used to process rich text. These
clements use internal data types, so declarations are not stated.

A rich text string contains sections of formatting, referred to as chunks. Each chunk can be processed using the core for
loop that performs the decomposition. Chunks are processed as variables of type RichText, from which different
properties can be extracted.

These decomposition functions are particularly valuable for implementing exporters that have to generate formatting
information.

Rich text tags

The following tags can be used in DXL code to create rich text strings:

\b bold text

\i italic text

\ul undetlined text

\strike struck through text

\sub subsctipt text

\super superscript text
\nosupersub neither subsctipt nor superscript

The syntax for using these tags within a string is as follows:

{tag<space>text}

DXL Reference Manual

836

or
{tag{text}}
Tags can be nested, to apply more than one type of formatting, as follows:

{tag<space>text{tag<space>text}}

Note: Remember that the back-slash character (\) must be escaped with another back-slash character in a string.

Rich text constructors

The dot operator (.) is used to extract information from tich text chunks.

Syntax
richString.richTextProperty
where:
richString Is a chunk of rich text of type RichText
richTextProperty Is one of the properties described below
Operation

The properties act on the chunk of rich text as follows:

String property Extracts

text The text of a chunk of rich text as a string without
formatting

Boolean property Extracts

bold Whether the chunk of rich text has bold formatting

last Whether the chunk of rich text is the last in the string

italic Whether the chunk of rich text has italic formatting

newline Whether the chunk of rich text is immediately

followed by a newline character

strikethru Whether the chunk of rich text has strike through
formatting

subscript Whether the chunk of rich text has subscript
formatting

DXL Reference Manual

837

Boolean property Extracts

superscript Whether the chunk of rich text that has superscript
formatting

underline Whether the chunk of rich text that has underline
formatting

For examples, see the for rich text in stringloop.

richText(column)

Declaration

string richText (Column c,
Object o)

Operation

Returns the text contained in column ¢ for the object o as rich text.

richTextWithOle(column)

Declaration
string richTextWithOle (Column c, Object o)

Operation

Returns the text contained in column ¢ for the object o0 as rich text, including OLE objects.

richTextWithOleNoCache(column)

Declaration
string richTextWithOleNoCache (Column c, Object o)

Operation

Returns the text contained in column ¢ for the object o as rich text, including OLE objects, and clears the OLE cache.

richTextNoOle(column)

Declaration

string richTextNoOle (Column c, Object o)

DXL Reference Manual

838

Operation

Returns the text contained in column ¢ for the object 0 as rich text, excluding OLE objects.

removeUnlistedRichText

Declaration
string removeUnlistedRichText (string s)

Operation

Removes rich text markup that Rational DOORS does not recognize. Fonts are preserved when importing Word or RTF
documents. Fonts can be specified by inserting a symbol from a specific font.

Example
This example prints {\b bold text} in the DXL Interaction window’s output pane:
string s = "{\\b \\unknown bold text}"

print removeUnlistedRichText s

for rich text in string

Syntax

for rt in string s do {

where:

rt is a variable of type RichText

s is a string containing valid rich text
Operation

Assigns the rich text variable rt to be each successive chunk of formatting in a rich text string, returning each as a pointer
to a structure of type RichText. This structure can tell you whether a piece of text is bold, italic, underlined, struck
through, subscript, superscript, or at the end of a line.

Example
string s = "{\\b Bold}{\\1i Italic}DXL"
RichText rt

for rt in s do {

if (rt.italic) print rt.text " is italic\n"
else

if (rt.bold) print rt.text " is bold\n"
else print rt.text " is neither\n"

DXL Reference Manual

839

}

This example prints:
Bold is bold
Italic is italic

DXL is neither

RichTextParagraph type properties

Properties are defined for use with the . (dot) operator and a RichTextParagraph type handle to extract information
from a RichTextParagraph type, as shown in the following syntax:

Syntax

for <RichTextParagraph> in <string> do

Operation
Loops through the rich text paragraph RichTextParagraph in the string string.

The following tables list the properties and the information they extract:

Integer property Extracts

indentLevel The indent level of the paragraph. The units are twips (= 1/20 point or
1/1440 inch). Currently the base unit of indentation in Rational
DOORS is 360 twips, so values of indentLevel will be multiples of 360.

bulletStyle The bullet style, as an integer. Currently the only values are 0 (no bullets)
and 1 (bullets).

Boolean property Extracts

isBullet Whether the paragraph has a bullet point.

String property Extracts

text The plain text of the paragraph.
Example

void dumpParagraphs (string s)
{
RichTextParagraph rp

for rp in s do {

DXL Reference Manual

840

print "****New paragraph\n"

print "text:" rp.text ":\n "

print "indent:" rp.indentLevel ": "
print "bullet:" rp.isBullet ": "

print "bulletStyle:" rp.bulletStyle ":\n"

}

Object o current
string s = richText o."Object text"
dumpParagraphs s

RichText type properties

Properties are defined for use with the . (dot) operator and a RichText type handle to extract information from a
RichText type, as shown in the following syntax:

Syntax

for <RichText> in <RichTextParagraph> do

Operation
Loops through the rich text chunks RichText in the RichTextParagraph RichTextParagraph.

The following tables list the properties and the information they extract:

Integer property Extracts

indentLevel The indent level of the rich text chunk. The units ate twips (= 1/20
point or 1/1440 inch). Currently the base unit of indentation in Rational
DOORS is 360 twips, so values of indentLevel will be multiples of 360.
The value will remain the same for all chunks in a line.

bulletStyle The bullet style, as an integer. Currently the only values are 0 (no bullets)
and 1 (bullets). The value will remain the same for all chunks in a line.

Boolean property Extracts

isBullet Whether the paragraph has a bullet point. The value will remain the
same for all chunks in a line.

isUrl Whether the rich text chunk is a URL.

isOle Whether the rich text chunk represents an OLE object.

DXL Reference Manual

EmbeddedOleObiject property Extracts

getEmbeddedOle

The embedded OLE object represented by the chunk.

Example

void dumpAllInfo (RichText rt)

{
print
print
print
print
print
print
print
print
print
print
print

// new in 6.0
print
print
print
print
print

}

"***********New Chunk:\n"
"text:" rt.text ": "
"bold:" rt.bold ": "

"italic:" rt.italic ": "
"underline:" rt.underline ":\n"
"strikethru:" rt.strikethru ":
"superscript:" rt.superscript ":
"subscript:" rt.subscript ": "
"charset:" rt.charset ":\n"
"newline:" rt.newline ": "

"last:" rt.last ":\n"

"isOle:" rt.isOle ": "
"indent:" rt.indentLevel ": "
"bullet:" rt.isBullet ": "

"bulletStyle:" rt.bulletStyle ":

"isUrl:" rt.isUrl ":\n"

void dumpAllParagraphs (string s)

{

RichTextParagraph rp
RichText rt

for rp in
print
print
print
print
print

s do {

"x***New paragraph\n"

"text:" rp.text ":\n "
"indent:" rp.indentLevel ": "
"bullet:" rp.isBullet ":\n"
"bulletStyle:" rp.bulletStyle "

for rt in rp do

{

dumpAllInfo rt

Z\l’l"

DXL Reference Manual

841

842

Object o = current
string s = richTextWithOle o."Object text"

dumpAllParagraphs s

Rich text strings

This section defines an operator and functions for strings containing rich text.

Assignment (rich text)

The equals operator (=) is used to assign rich text format to attributes, as follows:

Syntax

attrRef = richText (string s)
whete attrRef can be one of:
(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)
where:

o is an object of type Object

m is a module of type Module

1 is a link of type Link

attrName is a string identifying the attribute
Operation
Sets the attribute called at trName to the rich text string contained in s.
Example
Object o = current
0."Object Text" = richText "{\\b BOLD}"
0."Object Heading" = "{\\b BOLD}"
This sets:

e The current object’s text to BOLD

* The current object’s heading to \ {\\b BOLD\} which is displayed as {\b bold}

DXL Reference Manual

843

This demonstrates the importance of using the richText function in both getting and setting attribute values if you wish
to maintain the rich text content. If you do not process the string value with richText, all the markup is escaped with
backslashes and becomes apparent to the user.

cutRichText

Declaration

string cutRichText (string s,
int start,
int end,)

Operation

Returns the string s with the displayed characters from start to end removed. For the purposes of counting characters,
rich text markup is ignored, and markup is preserved.

Example

cutRichText ("{\\b 0123456}", 1, 3)
This example returns: {\b 0456}

findRichText

Declaration

bool findRichText (string s,
string sub,
int& offset,
inté& length,
bool matchCase)

Operation
Returns true if string s contains the substring sub.
If matchCaseis true, string s must contain string sub exactly with matching case; otherwise, any case matches.

The function returns additional information in offset and 1ength. The value of offset is the number of characters
in s to the start of the first match with string sub. The value of Iength contains the number of characters in the
matching string. The function replaceRichText uses of fset and Iength to replace the matched string with
another string.

Example

string s = "{\\b This is Bo{\\i 1d and italic}}"
string sub = "bold"

int offset

int len

DXL Reference Manual

844

if (findRichText (s, sub, offset, len, false)) {

print "Offset = " offset "\n"
print "Length = " len "\n"
} else {

print "Failed to match"
}

This example prints:
Offset = 12
Length = 8

because the braces are delimiters, not characters in the string.

isRichText

Declaration

bool isRichText (string s)

Operation

Returns true if string s is in the Rational DOORS rich text format; otherwise, returns false.

If false is teturned, s cannot be used to set any object attribute value.

Example

This example prints true in the DXL Interaction window’s output pane:
print isRichText "{\\i correct balance}"

This example prints false in the DXL Interaction window’s output pane:

isRichText "{\\b missing bracket"

replaceRichText

Declaration
string replaceRichText (string s,

int offset,

int Iength,

string r)

Operation
Returns a string, which is equivalent to s but with the characters between offset and offset+1length replaced with
r, whilst retaining formatting tags.
Example
RichText rt

string s = "{\\b This is Bo{\\i 1d and italic}}"

DXL Reference Manual

845

string r = "bOLD"

string result = replaceRichText (s, 12, 8, r)
print result "\n"

Prints:

{\b This is bO{\i LD and italic}}

richtext_identifier(Object)

Declaration

string richtext identifier (Object o)

Operation

Returns the object identifier (which is a combination of module prefix and object absno) as an RTF string.
Example

Object o = current

print richtext identifier (o)

pasteToEditbox

Declaration
bool pasteToEditbox ()

Operation

Pastes the contents of the clipboard into a module object that is ready for in-place editing. If the paste fails, the function
returns false.

Example
This example pastes bold text to an open module:
setRichClip richText "{\\b bold text}"

pasteToEditbox

richClip

This function has the following syntax:
richClip ()

Gets the rich text contents of the system clipboard as a rich text string.

Example
0."Object Text" = richClip

DXL Reference Manual

846

setRichClip

Declaration

void setRichClip(richText (string s)
[,string styleName])

Operation

Sets the system clipboard to contain the rich text string s. Optionally, you can include a minimal RTF style sheet that
contains a supplied style name, which sets the string style.

Example
setRichClip richText o."Object Text"
// with style sheet

setRichClip (richText o."Object Heading,
"Heading 1")

setRichClip(Buffer/RTF_string_)

Declaration
void setRichClip (RTF string s, string styleName, string fontTable)
void setRichClip(Buffer buff, string styleName, string fontTable)

void setRichClip (RTF string s, string styleName, string fontTable, bool
keepBullets, bool keepIndents)

void setRichClip(Buffer buff, string styleName, string fontTable, bool
keepBullets, bool keepIndents)
Operation

First form sets the system clipboard with the rich text obtained by applying the style sty leName to the string s, using the
font table font Table supplied, which should include a default font. Font numbers in the string s will be translated to the
supplied font table fontTable.

Second form is same as the first but the soutce is a buffer buff rather than an RTF_string .

Third form sets the system clipboard with the rich text obtained by applying the style sty leName to the string s, using
the font table fontTable supplied. If keepBulletsis false, any bullet characters are removed from string s. If
keepIndentsis false, any indentation is removed from string s. If keepBullets and keepIndents are both
true, the behavior is exactly the same as the first form.

Fourth form is same as the third but the soutce is a buffer buff other than an RTF_string .

Example 1
The following code:
string s = "hello"

DXL Reference Manual

847

string fontTable = "\\deffO{\\fonttbl {\\fl Times New Roman;}}"
setRichClip (richText s, "Normal", fontTable)
puts the following rich text string onto the system clipboard:

{\rtfl \deffO{\fonttbl {\fl Times New Roman;}}{\stylesheet {\sl Normal;}}{\sl
hello\par}}

Example 2

string bulletedString =
"{\\rtfl\\ansi\\ansicpgl252\\deff0\\deflangl033{\\fonttbl {\\f0\\fswiss\\fcharse
£t0 Arial; }{\\fI1\\fnil\\fcharset2 Symbol;}}

\\viewkind4\\ucl\\pard\\f0\\fs20 Some text with\\par

\\pard{\\pntext\\£I\\'B7\\tab} {*\\pn\\pnlvlblt\\pnfl\\pnindentO {\\pntxtb\\ 'B7
}INNEL-720\\11720 bullet 1\\par

{\\pntext\\fI\\'B7\\tab}bullet 2\\par
\\pard bullet points in it.\\par
\\par

po

string fontTable = "\\deffO{\\fonttbl{\\fO\\fswiss\\fcharsetO
Arial; }{\\fI\\fnil\\fcharset2 Symbol;}}"

setRichClip (richText bulletedString, "Normal", fontTable)

// the previous call puts

// "{\rtfl \deffO{\fonttbl{\fO\fswiss\fcharset0 Arial;}{\fl\fnil\fcharset?2
Symbol; }}{\stylesheet {\sl Normal;}}{\sl Some text with\par {\fl\'b7\tabl}bullet
I\par {\fl\'b7\tablbullet 2\par bullet points in it.\par \par}}"

// on the clipboard

setRichClip (richText bulletedString, "Normal", fontTable, false, false)

// the previous call puts

// "{\rtfl \deffO{\fonttbl{\fO\fswiss\fcharset0 Arial;}{\fl\fnil\fcharset?2
Symbol; }}{\stylesheet {\sl Normal;}}{\sl Some text with\par bullet 1l\par bullet
2\par bullet points in it.\par \par}}"

// on the clipboard -- note no bullet symbols (\'b7) in the markup

DXL Reference Manual

848

rtfSubString

Declaration
Buffer rtfSubString (Buffer input, Buffer output, int start, int end)

Operation

This function takes an RTF buffer and returns the RTF sub-string between the defined start and end points.

Variable Description

input The complete RTF text. This can be full RTF or an RTF fragment, but must
be valid RTF and not plain text.

output The buffer in which the sub-string will be returned. This buffer must be
created before calling rt £SubString. This return value will always be
full RTF. A reference to this buffer is the return value of the function.

start The zero-based start point of the sub-string.
end The end point of the sub-string.
Example
Object o = current
Buffer input = create
Buffer output = create

input = o0."Object Text"
rtfSubString (input, output, 4, 8)

print stringOf (output)

richText(of attribute)

Declaration
Buffer richText (attrRef
[,bool includeFontTable])
whete attrRef can be one of:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)

DXL Reference Manual

849

where:
o is an object of type Object
m is a module of type Module
1 is a link of type Link
attrName is a string identifying the attribute
Operation

Returns the rich text version of an attribute called at trName, if includeFontTableis false, or not present.

If the boolean atgument is true, it returns the rich text version of an attribute value appended to the font table for that
module. The Boolean argument is only applicable to the string version.

This preserves the meaning of font markup when moving rich text attribute values between modules.

Example

print richText (current Object) . "Object Text"

If the Object text attribute of the current object is Engine:
{\b Engine }

Module oldm, newm

Object oldo, newo

oldo = first oldm

newo = create newm

newo."Object Text" = richText (oldo."Object Text", true)
Example 2

Object o = current Object

Buffer b = create

b = richText (o."Object Text")
print stringOf b

delete b

richText(of string)

Declaration

string richText (string s)

Operation

Returns a string, which is the correct rich text version of string s. It inserts a backslash escape character before unescaped
braces and unescaped backslashes. This makes it suitable for assignment to attribute values.

DXL Reference Manual

850

Example
print richText "{ \\hello }"
Prints:

"\{ \\hello \}"

string exportAttributeToFile

Declaration

string exportAttributeToFile (attrRef, string fileNameWithCompletePath)
where attrRef can be one of:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1) . (string attrName)

Operation

Writes the rich text of attribute at t r, including the OLE objects to file £ileNameWithCompletePath. If
fileNameWithCompletePath does not already exist, it is created. If it already exists, it is overwritten.

Returns null on success, or an error message on failure.

stringOf(rich text)

Declaration
string stringOf (richText (string s))

Operation

This enables access to rich text as a string.

richTextWithOle

Declaration

string richTextWithOle (attrRef attr)
where attrRef is in one of the following formats:
(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)

DXL Reference Manual

851

Operation
Returns the rich text of attribute at tr, including the OLE objects. The use of this perm should be confined to copying

rich text values from one attribute to another.

richTextWithOleNoCache

Declaration

string richTextWithOleNoCache (attrRef attr)
where attrRef is in one of the following formats:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

Returns the rich text of attribute at t r, including the OLE objects, and clears the OLE cache. The use of this perm should

be confined to copying rich text values from one attribute to another.

richTextNoOle

Declaration

string richTextNoOle (attrRef attr)
where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)
Operation

Returns the rich text of attribute at tr, excluding the OLE objects. The use of this perm should be confined to copying

rich text values from one attribute to another.

applyTextFormattingToParagraph

Declaration

string applyTextFormattingToParagraph(string s, bool addBullets,
int indentLevel, int paraNumber, [int firstIndent])

Operation

Applies bullet and/or indent style to the given text, overwriting any existing bulleting/indenting.

* If addBulletsis true, adds bullet style.

DXL Reference Manual

852

* If indentLevel is nonzero, adds indenting to the value of indentLevel. The units for indentlLevel are twips =
twentieths of a point.

* If paraNumber is zero, the formatting is applied to all the text. Otherwise it is only applied to the specified paragraph
number.

* If the optional parameter £irstIndent is specified, then this sets the first line indent. If the value is negative then
this sets a hanging indent. The units are in points.

The input string s must be rich text. For example, from string s = richText o."Object Text".

Returns a rich text string which describes the text with the formatting applied.

Example
Object o = current
string s = o0."Object text"

0."Object text" = richText (applyTextFormattingToParagraph (richText
s,true,0,0))

Adds bullet style to all of the current object’s text.

exportRTFString

Declaration

string exportRTFString(string text)

Operation

Translates a Rational DOORS rich text string to the RTF standard. Newlines are converted into \par tags, not
\newline.

For use with legacy RTF only, any new code should use removeUnlistedRichText.
Example

Object o = current

string str = o."Object Text"

string rtf string = exportRTFString(str)

richTextFragment

Declaration
string richTextFragment (string richString)
string richTextFragment (string richString, string fontTable)

string richTextFragment (string richText [, string fontTable [, bool
inTablel])

DXL Reference Manual

853

Operation

The first form takes an argument richFrag which should be a rich text string. Returns an equivalent representation of
the rich text with RTF header information removed. Useful for building up a real RTF string without having to cope with
the header information every time. Font markup will be mapped to the Rational DOORS default font table.

The second form is the same as the first except for the second argument, fontTable, which is a font table string. Any
font markup in the string is mapped to the first font in the font table passed in which has the same character set as the
original markup.

The third form has an optional boolean argument which, if provided and set to true, ensures that the returned rich text
string is valid as contents of a rich text table. Use this setting if multiple paragraphs are exported to a single table cell and the
resulting rich text output is to be opened by MS-Word 2000.

Example 1

string richString =
"{\\rtfl\\ansi\\ansicpgl252\\deff0\\deflangl033
{\\fonttbl{\\£f0\\fnil\\fprgl\\fcharset0 Times New Roman;}
{\\fI\\froman\\fprg2\\fcharset2 Symbol;}}
{\\colortbl ;\\redO\\green0O\\blueO;}
\\viewkind4\\ucl\\pard\\cfI\\f0\\fs20

Some plain text.

\\b Some bold text.\\bO0

\\b\\i Some bold and italic text. \\bO\\i0
A symbol \\fl a\\f0 (alpha) .\\b\\i\\par }"

print richTextFragment richString

// returns

// Some plain text. \\b Some bold text.\\b0 \\b \\i Some bold and italic text.
\\b0 \\i0 A symbol \{\\£f1001 a\}\{\\f1007 (alpha).\}

Example 2

string fontTable =

"\\deffl{\\fonttbl

{\\f0\\fswiss\\fcharset0 Arial;}
{\\f1\\froman\\fprg2\\fcharset0 Times New Roman; }
{\\f2\\ froman\\fprg2\\fcharset2 Symbol;}}"

DXL Reference Manual

854

print richTextFragment (richString, fontTable)

// returns

// Some plain text. \\b Some bold text.\\b0O \\b \\i Some bold and italic text.
\\b0 \\i0 A symbol \{\\f2 a\}\{\\f0 (alpha).\}

Enhanced character support

This section lists constants and defines functions for the display and printing of characters outside the ANSI character set.

Character set constants

For the display and printing of characters outside the ANSI character set, you can specify another character set. For the
results to be correct, you must have the appropriate fonts installed. The following integer character set constants are
declared:

charsetAnsi

charsetSymbol

charsetGreek

charsetRussian

charsetEastEurope

charsetTurkish

charsetHebrew

Certain UNIX machines may not display some characters correctly.

For an example of the use of character set constants, see "Character set identification" below.

Character set identification

The dot operator (.) is used to identify the character set of rich text, as follows:
Syntax

richString.charset ()

where:

richString isa chunk of rich text of type RichText

Operation

Returns the character set of a chunk of rich text.

DXL Reference Manual

855

Example
for rt in s do {
if (rt.charset == charsetAnsi) {
print rt.text " is in the ANSI character
set\n"
} else if (rt.charset == charsetSymbol) ({
print rt.text " is in the Symbol character
set\n"
} else {
print rt.text " is in character set number

" rt.charset "\n"

charsetDefault

Declaration
int charsetDefault ()
Operation

Returns the system default character set. On UNIX platforms, this is always charsetAnsi. On Windows systems, this is
the user’s local setting.

Example
string s
RichText rt

for rt in s do {

if (rt.charset == charsetAnsi) {
print rt.text " is in the ANSI character
set\n"
} else if (rt.charset == charsetSymbol) {
print rt.text " is in the Symbol character
set\n"
} else {
print rt.text " is in the character set
number " rt.charset "\n"
}
if (rt.charset == charsetDefault) {
print rt.text " is in your system default

character set\n"

DXL Reference Manual

856

characterSet

Declaration

void characterSet (DBE canvas,
int level,
int mode,
int characterSet)
Operation

Sets the level, mode and character set for drawing strings on the canvas. Through the font tables, this sets the font.

Example
DB symbolBox = create "Symbols"

void repaint (DBE symbol) {
int fsize =1 // level 1 size
int mode = 0 // body text style

background (symbol,
logicalPageBackgroundColor)

color (symbol, logicalDataTextColor)

characterSet (symbol, fsize, mode,
charsetAnsi)

draw (symbol, 10, 20, "abc")
// appears as abc

characterSet (symbol, fsize, mode,
charsetSymbol)

draw (symbol, 40, 20, "abc")
// appears as alpha beta chi

}
DBE symbol = canvas (symbolBox, 100, 50, repaint)

show symbolBox

fontTable

Declaration
string fontTable (Module m)

Operation

Returns the module’s font table, which is used for mapping rich text font markup to character set information.

DXL Reference Manual

857

Example

print fontTable current Module

In a newly created module, the Rational DOORS default font table is:
{\fl01l6\fswiss\fcharsetl34 Tahoma; }
{\f1015\fswiss\fcharsetl36 Tahoma;}
{\f1014\fswiss\fcharsetl29 Tahoma;}
{\f1013\fswiss\fcharsetl28 Tahoma; }
{\f1l012\fswiss\fcharsetl77 Arial;}
{\f1011\fswiss\fcharsetl62 Arial;}
{\f1010\fswiss\fcharset238 Arial;}
{\f1009\fswiss\fcharset204 Arial;}
{\f1008\fswiss\fcharsetl6l Arial;}
{\f1007\fswiss\fcharset0 Arial;}
{\f1006\froman\fcharsetl77 Times New Roman;}
{\f1005\froman\fcharsetl62 Times New Roman;}
{\f1004\froman\fcharset238 Times New Roman; }
{\f1003\froman\fcharset204 Times New Roman;}
{\f1002\froman\fcharsetl6l Times New Roman;}
{\f1001\ftech\fcharset2 Symbol;}

{\f1000\froman\fcharset0 Times New Roman;}

Importing rich text

This section defines a function for importing rich text.

importRTF

Declaration

int importRTF (string file,
Module m,
bool mapStyles,
bool dynamicUpdate)

DXL Reference Manual

858

Operation

Imports the rich text format file file, into a new sibling at the same level as the current object of module m. If mapStyles

is set, you are prompted to match styles if non-standard styles are used. If dynamicUpdate is set, the displayed module
is refreshed.

Returns
#define ecOK 0 /* Everything's fine! */
#define ecStackUnderflow 1 /* Unmatched '}' */

#define ecStackOverflow 2 /* Too many '{' -- memory exhausted */
#define ecUnmatchedBrace 3 /* RTF ended during an open group. */
#define eclnvalidHex 4 /* invalid hex character found in data */
#define ecBadTable 5 /*RTF table (sym or prop) invalid */

#define ecAssertion 6 /* Assertion failure */

#define ecEndOfFile 7 /* end of file reached */

#define ecFileNotFound 8 /*The file could not be found (or opened) */

Example

Int 1 = importRTF ("c:\\doors\\examples\\parse.rtf", current Module, false,
false)

if (1 == 0)
{
print "Successful\n"
} else {
print "Failed - return code " i " \n"

Diagnostic perms

These perms ate for run-time richText/ OLE DXL diagnostics. DXL sctipts written for pre-V6 Rational DOORS do not
specify whether OLE objects should be included in richText extracted from Object Text attributes or the main column in a
view. If diagnostics are enabled, the user can be given warnings when this occurs, enabling the user to replace the
richText () call with richTextWithOle () or richTextNoOle (). The user can also be warned when a new
value is assigned to an Object Text attribute, as this will now replace any OLE objects in the Object Text.

enableObjectTextAssignmentWarnings

Declaration

enableObjectTextAssignmentWarnings (string logFile)

DXL Reference Manual

859

Operation

Enables warnings whenever a new value is assigned to an Object Text attribute. Warnings are disabled by default. This perm
returns no value. The 10gFile argument enables the user to specify a file where filenames and line numbers will be
logged, where warnings are issued. If this argument is null, no logging is done. If the file cannot be opened, a warning
message is displayed. If a log file has already been opened, this argument has no effect.

disableObjectTextAssignmentWarnings

Declaration
disableObjectTextAssignmentWarnings ()

Operation

Disables warnings whenever a new value is assigned to an Object Text attribute. Warnings are disabled by default. This

perm returns no value.

enableObjectTextRichTextWarnings

Declaration
enableObjectTextRichTextWarnings (string logFile)

Operation

Enables warnings whenever the richText (Attribute) perm is applied to an Object Text attribute, or the
richText (Column,Object) perm is applied to the Main column. The 1ogFile argument is treated the same way
as that for enableObjectTextAssignmentWarnings (). If a logFile has already been opened, this argument has

no effect.

This perm returns no value.

disableObjectTextRichTextWarnings

Declaration
disableObjectTextRichTextWarnings ()

Operation

Disables warnings when the richText (Attribute) perm is applied to an Object Text attribute, or the
richText (Column,Object) perm is applied to the Main column. If
enableGeneralRichTextWarnings () has been called, warnings will still be issued for all richText () perms,

until disableGeneraRichTextWarnings () is called.

This perm returns no value.

DXL Reference Manual

860

enableGeneralRichTextWarnings

Declaration

enableGeneralRichTextWarnings (string logFile)

Operation

Enables warnings whenever the richText (Attribute) or richText (Column,Object) perm is called. The
logFile argument is treated the same way as for the other enable perms above. This perm returns no value.

disableGeneralRichTextWarnings

Declaration

disableGeneralRichTextWarnings ()

Operation

Normally disables warnings whenever the richText (Attribute) or richText (Column, Object) perm is
called. The exception to this is if enableObjectTextRichTextWarnings () has been called, warnings will still be
issued when these richText perms are applied to Object Text or the Main column. This perm returns no value.

enableRepeatWarnings

Declaration

enableRepeatWarnings ()

Operation

Enables multiple repeated warnings to be issued for the same DXL script file/line-number combination, whenever that
code is executed by the interpreter. By default, only one warning is issued for any file/line in any one Rational DOORS
client session. This perm returns no value.

disableRepeatWarnings

Declaration
disableRepeatWarnings ()

Operation

This perm negates the effect of enableRepeatWarnings (). It returns no value. Note that the repeat prevention does
not apply to DXL scripts run from the DXL Interaction window.

DXL Reference Manual

861

disableDisplayWarnings

Declaration
disableDisplayWarnings ()
Operation

Disables the pop-up warning dialogs. If enabled, warnings are still logged in the specified 1ogFile. This perm returns no

value.

enableDisplayWarnings

Declaration

enableDisplayWarnings ()

Operation

Enables pop-up warning dialogs. It returns no value.

dxIWarningFilename

Declaration

string dxlWarningFilename ()

Operation

Returns the filename quoted in the last pop-up warning dialog.

dxIWarningLineNumber

Declaration

int dxlWarningLineNumber ()

Operation

Returns the line number quoted in the last pop-up warning dialog.

DXL Reference Manual

862

DXL Reference Manual

Chapter 34

Spelling Checker

This chapter describes the following features of the spelling checker:
* Constants and general functions

* Language and Grammar

e Spelling Dictionary

* Miscellaneous Spelling

* Spelling\Dictionary Examples

Constants and general functions

Language Constants

Operation

The following are used to specify one of the standard supported languages:
USEnglish

UKEnglish

French

German

GermanReform

Example

SpellingOptions options

getOptions (options, userSpellingOptions)
setLanguage (options, German)

saveOptions (options)

Options Constants

Operation

The following are used by the getOptions function to specify which set of spelling options are to be opened:

databaseSpellingOptions

DXL Reference Manual

863

864

userSpellingOptions
Example
SpellingOptions options

getOptions (options, databaseSpellingOptions)

Dictionary Constants

Operation

The following are used by the open function to indicate which type of dictionary is to be opened:
databaseDictionary

clientDictionary

Example

Dictionary d

open (d, clientDictionary)

insert (d, "IBM")

Grammar Constants

Operation

The following are used to define the formality of grammar checking:
informalGrammar

standardGrammar

formalGrammar

Example

SpellingOptions options

getOptions (options, userSpellingOptions)
setGrammarLevel (options, informalGrammar)

saveOptions (options)

Spell Check Mode Constants

Operation
The following are used to define the level of spell checking to be carried out:

spellingOnly

DXL Reference Manual

quickProof

fullProof

Example

SpellingOptions options

getOptions (options, userSpellingOptions)

setCheckMode (options, quickProof)

spell

Declaration
string spell (string word)

string spell (Object o,
string attrName,
int &start,
int &end)

Operation

The first form checks the word for spelling, and returns a null string if it is correct or if word is a null string. If the spelling

is not correct, returns an error message.

The second form checks the attribute name for spelling, and returns a null string if it is correct, if at t rName is a null
string, or if the specified attribute is not contained in the specified object. If the spelling is not correct, returns an error

message. It only works with string or text attributes.

The start and finish arguments must be initialized to zero before the function is called. If the contents of
attrName ate misspelled, the function sets the values of start and finish to identify the first and last characters of

the incorrectly spelled substring.

Example
Object o = current

// check status
if (o !'= null)
{

int iStart = 0, iFinish = 0

// get attribute info

string sObjectHeading = probeRichAttr (o,
"Object Heading")

int iLength = length(sObjectHeading)

// process attribute
while (iStart < iLength)
{

// check attribute

DXL Reference Manual

865

866

if (spell(o, "Object Heading", iStart,
iFinish) != null)

// warn user

print "Spelling mistake located ["
iStart ":" iFinish "] - '"
sObjectHeading[iStart:iFinish] "'\n"

// adjust accordingly
iStart = iFinish

spellFix

Declaration
string spellFix (Object o,
string attrName,
int &start,
int &end,
string newString)

Operation

Replaces a misspelled string within the specified attribute, which must be a string or text attribute. The string is identified
using start and finish, provided the spell function has previously been called on the object and attribute.

In cases where the new string is a different length from the misspelled substring, the function resets the values of start
and finish.

Returns a null string if it the substring is replaced successfully or if the specified attribute is not contained in the specified
object. Otherwise, returns an error message.

alternative

Declaration

string alternative (int n)

Operation

Returns the nth spelling for the word last passed to spell.

alternatives

Declaration

int alternatives ()

DXL Reference Manual

Operation

Returns the number of options found for the last call to spell.

for all spellings

Syntax

for s in alternatives do {

}
where:

s is a string variable

Operation

Assigns string s to be each successive value found for the last spelling check.
Example

string mess = spell ("whta")

if (null mess) {
print "You are a spelling bee\n"

} else {
int n = alternatives
print "There are " n " other spellings:\n"

string altSpelling

for altSpelling in alternatives do
print altSpelling "\n"

spell

Declaration
Buffer spell (Buffer returnBuffer, Buffer word)

Buffer spell (Buffer returnBuffer,
Object o,
string attribute,
int &wordStart,
int &wordEnd,
int &sentenceStart,
int &sentenceEnd,
int &ruleType,
bool spellingErrorsFirst,
bool ¢&deletionError)

DXL Reference Manual

867

868

Operation

First form of the spell perm that returns a buffer returnBuffer, to reduce memory usage caused by using strings. The

perm returns an empty Buffer if the word is correct, or an error message otherwise.

e returnBuffer

Buffer used to create the return value - must be created before calling.

e word

The wotd to be checked.

The second form of this perm checks spelling and grammar in the named attribute at tribute of the specified object o.
If an error is found, the error details returned in the parameters relate to the first error. Call getNextError () to view

subsequent etror details.

Variable Description

returnBuffer Buffer used to create the return value - must be created before calling.

o The object to be checked.

attribute Name of the specific attribute to be checked.

wordStart If an error is found, returns the start position of the incorrect word in the
attribute text.

wordEnd If an error is found, returns the end position of the incorrect word.

sentenceStart If an error is found, returns the start position of the sentence containing the
ertor.

sentenceEnd If an error is found, returns the end position of the sentence containing the
error.

ruleType If an error is found, returns the code of the rule that triggered the error.

spellingErrorsFirst

Specifies whether spelling errors should be reported before grammar errors -
note that this operates at a sentence level.

DXL Reference Manual

deletionError If an error is found, this flag indicates that the error type recommends that text
is deleted (e.g. this will occur when a word is duplicated, such as "This is is an
errot."
getNextError
Declaration
void getNextError (Buffer errorString,
int &wordStart,
int &wordEnd,
int &sentenceStart,
int &sentenceEnd,

869

bool &correctionComplete,
bool skipSentence,

int &ruleType,

bool &deletionError)

Operation

Returns errors found after a call to spell (Buffer, Object, string, int, int, int, int, int,
bool, bool).Note that this perm does not return errors found after calling any other variant of the spell perm.

Variable Description

returnBuffer If an error is found, the description will be placed in this buffer - must be
created before calling.

wordStart If an error is found, returns the start position of the incorrect word in the
attribute text.

wordEnd If an error is found, returns the end position of the incorrect word.

sentenceStart If an error is found, returns the start position of the sentence containing the
errof.

sentenceEnd If an error is found, returns the end position of the sentence containing the

correctionComplete
skipSentence
ruleType

deletionError

error.
This flag will be returned true if no more errors were found.

Set this flag when calling to ignore any remaining errors in the current sentence.
If an error is found, returns the code of the rule that triggered the error.

If an error is found, this flag indicates that the error type recommends that text
is deleted.

SpellingErrors__

Declaration

SpellingErrors spellingErrors()

Operation

Structure encapsulating information about spelling and grammatical errors.

for SpellingError in SpellingErrors__

Declaration

for SpellingError in SpellingErrors

DXL Reference Manual

870

Operation

Loop to iterate over errors found after calling the spell (Buffer, Object, string, ints&, ints&, ints,
int&, int&, bool, boolé&) perm. Note that this loop does not list errors found after calling any other variant of

the spell perm.

getErrorString

Declaration
Buffer getErrorString(Buffer returnBuffer, SpellingError spellErr)

Operation

Returns a description for the specified error spellErr. The returnBuffer parameter must be created before calling.

getErrorStartPos(SpellingError)

Declaration
int getErrorStartPos (SpellingError spellErr)

Operation

Used inside the 'for error in spellingErrors do' loop. Returns the position of the start of the
spelling/grammatical etror relative to the start of the object.

getErrorStopPos(SpellingError)

Declaration
int getErrorStopPos (SpellingError spellErr)

Operation

Used inside the ' for error in spellingErrors do' loop. Returns the position of the last character of the
spelling/grammatical etror relative to the start of the object.

getSentenceStartPos(SpellingError)

Declaration

int getSentenceStartPos (SpellingError spellErr)

Operation

Used inside the ' for error in spellingErrors do' loop. Returns the position of the first character in the
sentence containing the spelling/grammatical error relative to the start of the object.

DXL Reference Manual

871

getSentenceStopPos(SpellingError)

Declaration

int getSentenceStopPos (SpellingError spellErr)

Operation

Used inside the ' for error in spellingErrors do' loop. Usedinside the ' for error in
spellingErrors do' loop. Returns the position of the last character in the sentence containing the
spelling/grammatical etror relative to the start of the object.

getCorrectionComplete(SpellingError)

Declaration

bool getCorrectionComplete (SpellingError spellErr)

Operation

Used inside the ' for error in spellingErrors do' loop. Returns true if the spell check is complete
otherwise false.

ignoreWord

Declaration

void ignoreWord(string word)

Operation

Causes the specified word to be ignored if it is found to be incorrect during spell checking. The word is ignored until
resetSpellingState is called.

for Buffer in SpellingAlternatives___

Declaration
for b in spellAlt do {

where:
b is a variable of type Buf fer
spellAlt is a variable of type

SpellingAlternatives

DXL Reference Manual

872

Operation

A loop to iterate through alternative words found after a spelling error. Alternative words are returned in a Buffer object,
but note that the user should not create or destroy the Buffer.

alternative

Declaration

Buffer alternative (Buffer returnBuffer, int index)

Operation

Returns the alternative word at the specified index position, after a spelling error. The returnBuffer parameter much
be created before calling. An etror will be reported if the index is out of range.

Language and Grammar

Languages

Declaration

Languages languages ()

Operation

Type to iterate through spLanguageInfo

Language

Declaration

Language lang

Operation

Type to encapsulate details of available language databases.

spGetLanguages

Declaration

int spGetLanguages ()

DXL Reference Manual

873

Operation

Fills the list of available languages. This will be a list of those languages that are supported by the spell checker and whose
language database is present on the local client. Returns the number of available languages.

for Language in Languages___

Declaration

for Language in Languages_

Operation

Iterates through the specified Languages.

getLanguage

Declaration
Language getlanguage (int index)

Operation

Returns the spLanguageInfo structure for the language at the specified index in the list of available languages. If the
index value is outwith the range of available languages, an error report is generated.

getld

Declaration
int getId(Language lang)

Operation
Returns the ID of the specified language 1ang. (e.g. "English", "German").

getName

Declaration

string getName (Language lang)

Operation
Returns a string identifying the specified language Iang. (e.g. "UK English", "German").

DXL Reference Manual

874

isSupported

Declaration
bool isSupported(Language lang)

Operation

Returns a boolean indicating if the specified language 1ang is officially supported by Rational DOORS. At present, this
covers US English, UK English, French and German (pte- and post-Reform).

getGrammarRules

Declaration

int getGrammarRules (SpellOptions &spellOptions, GrammarRules &gramRules)

Operation

Gets a list of active grammar rules for the specified options set spellOpt, returning the number of active rules
&gramRules. Active rules are determined by the current language and grammar strictness level.

The GrammarRules parameter must be initialized to *null’ before calling.

getName

Declaration

Buffer getName (GrammarRules &gramRules, int index, Buffer buf)

Operation

Returns the short name of the grammar rule at the position specified by the index parameter in the set of grammar rules
&gramRules. If the value of index is greater than the number of active rules, an error report is generated. The buf
parameter is a Buffer that is used to create the return value; it must be created by the user before calling and deleted

afterwards.

getExplanation

Declaration

string getExplanation (GrammarRules &gramRules, int index, Buffer buf)

Operation

Returns a full explanation of the grammar rule at the position specified by the 1 ndex parameter in the set of grammar rules
&gramRules. If the value of index is greater than the number of active rules, an error report is generated. The buf
parameter is a Buffer that is used to create the return value; it must be created by the user before calling and deleted

afterwards.

DXL Reference Manual

875

getOptions

Structure encapsulating spell checker options.

Declaration
string getOptions (SpellingOptions é&spellOptions, int optionsSet)

Operation

Gets set of spelling options. The optionsSet parameter indicates which set of options to load. At present this is limited
to the database-wide default settings (defined by spDatabaseOptions with a value of 0) and the user’s personal setting
(spUserOptions with a value of 1). Any other value will return a failure message. Where a user’s settings have not yet
been configured, the database default values will be returned. An error string is returned if there is a problem reading the
options files, but in this case the SpellingOptions parameter will contain standard defaults.

save(SpellingOptions)

Declaration
string save (SpellingOptions &spellOptions)

Operation

Saves the spelling options.

If the options was loaded as the database defaults, the user must have sufficient access rights to modify database settings,

otherwise the function will return an error string.

getLanguage

Declaration
int getLanguage (SpellingOptions &spellOptions)

Operation
Returns the ID of the spelling checking language defined in the SpellingOptions parameter.

setLanguage

Declaration
string setlLanguage (SpellingOptions &spellOptions, int languagelId)

Operation

Sets the spell checking language in the specified set of SpellingOptions. If the IanguageIdis invalid, the function
will return an error string.

DXL Reference Manual

876

getEnglishOptions

Declaration

string getEnglishOptions (SpellingOptions &spellOptions, bool &legallexicon,
bool &financialLexicon)

Operation

Returns boolean values indicating the state of options specific to US and UK English. Returns error string if the parameters

are missing from the options set.

setEnglishOptions

Declaration

string setEnglishOptions (SpellingOptions &spellOptions, bool &legalLlexicon,
bool &financialLexicon)

Operation

Sets a boolean value indicating the state of options specific to US and UK English. These can be modified if a language
other than English is selected.

getUKOptions

Declaration
string getUKOptions (SpellingOptions &spellOptions, bool &izeEndings)

Operation

Returns a boolean value indicating the state of an option specific to UK English.

setUKOptions

Declaration
string setUKOptions (SpellingOptions spellOptions, bool izeEndings)

Operation

Sets a boolean value indicating the state of an option specific to UK English. This option can be set even if a language other
than UK English is selected.

DXL Reference Manual

877

getFrenchOptions

Declaration

string getFrenchOptions (SpellingOptions &spellOptions, bool &openLigature, bool
&accentedUpperCase)

Operation

Gets boolean values indicating the state of options specific to French.

setFrenchOptions

Declaration

string setFrenchOptions (SpellingOptions é&spellOptions, bool &openLigature, bool
&accentedUpperCase)

Operation

Sets boolean values indicating the state of options specific to French. These options can be set even if a language other than

French is selected.

getGermanOptions

Declaration
string getGermanOptions (SpellingOptions &spellOptions, bool &scharfes)

Operation

Gets boolean values indicating the state of options specific to German.

setGermanOptions

Declaration
string setGermanOptions (SpellingOptions &spellOptions, bool &sharfes)

Operation

Sets boolean values indicating the state of options specific to German. These options can be set even if a language other

than German is selected.

DXL Reference Manual

878

getGreekOptions

Declaration
string getGreekOptions (SpellingOptions, bool& accentedUpperCase)

Operation

Gets boolean values indicating the state of options specific to Greek.

setGreekOptions

Declaration
string setGreekOptions (SpellingOptions, bool accentedUpperCase)

Operation

Sets boolean values indicating the state of options specific to Greek. These options can be set even if a language other than

Greek is selected.

getSpanishOptions

Declaration
string getSpanishOptions (SpellingOptions, bool& accentedUpperCase)

Operation

Gets boolean values indicating the state of options specific to Spanish.

setSpanishOptions

Declaration
string setSpanishOptions (SpellingOptions, bool accentedUpperCase)

Operation

Sets boolean values indicating the state of options specific to Spanish. These options can be set even if a language other

than Spanish is selected.

getCatalanOptions

Declaration
string getCatalanOptions (SpellingOptions, bool& periodMode)

DXL Reference Manual

879

Operation

Gets boolean values indicating the state of options specific to Catalan.

setCatalanOptions

Declaration
string setCatalanOptions (SpellingOptions, bool periodMode)

Operation

Sets boolean values indicating the state of options specific to Catalan. These options can be set even if a language other than

Catalan is selected.

getRussianOptions

Declaration
string getRussianOptions (SpellingOptions, bool& joMode)

Operation

Gets boolean values indicating the state of options specific to Russian.

setRussianOptions

Declaration
string setRussianOptions (SpellingOptions, bool joMode)

Operation

Sets boolean values indicating the state of options specific to Russian. These options can be set even if a language other

than Russian is selected.

getGrammarLevel

Declaration
int getGrammarLevel (SpellingOptions é&spellOptions)

Operation

Returns an integer value indicating the strictness of grammar checking,.

DXL Reference Manual

880

setGrammarLevel

Declaration

string setGrammarLevel (SpellingOptions &spellOptions, int grammar)

Operation

Sets an integer value indicating the strictness of grammar checking. Returns an error string if the grammar level is invalid, or
if the user does not have sufficient rights to modify settings.

setSpellingCheckingMode

Declaration
string setSpellingCheckingMode (int spellMode)

Operation

Sets the mode for spell checking - the parameter is a value indicating spelling only, quick proof, or full proof modes. Returns
an error string if the mode value is invalid or the user does not have sufficient rights to modify settings.

getSpellingCheckingMode

Declaration
int getSpellingCheckingMode ()

Operation

Returns a value indicating the current spell checking mode.

getSpellingFirst

Declaration
bool getSpellingFirst (SpellOptions é&spellOptions)

Operation

Returns a flag indicating if spelling errors are to be returned before grammar errors in the specified options set.

setSpellingFirst

Declaration
string setSpellingFirst (SpellOptions &spellOptions, bool errors)

DXL Reference Manual

881

Operation

Sets a flag indicating if spelling errors are to be returned before grammar errors in the specified options set. Returns an etror
string if the user does not have sufficient rights to modify settings.

getlgnoreReadOnly

Declaration
bool getIgnoreReadOnly (SpellOptions &spellOptions)

Operation

Returns a flag indicating if objects that are read only are to be ignored (not checked) in the specified options set.

setlgnoreReadOnly

Declaration
string setIgnoreReadOnly (SpellOptions &spellOptions, bool read)

Operation

Sets a flag indicating if objects that are read only are to be ignored (not checked) in the specified options set. Returns an
error string if the user does not have sufficient rights to modify settings.

Spelling Dictionary

Dictionary

A new type to represent a dictionary, including its type (database or client) and contents. A variable of this type should be
initialized to null before opening the dictionary.

open(Dictionary)

Declaration

string open (Dictionary &dict, int dictionaryType)

string open (Dictionary &dict, int languageld, int dictionaryType)
Operation

The first form opens a client or database dictionary for the language defined in the current user’s spelling options. The
Dictionary parameter should be initialized to null before calling this function. Returns a string indicating failure, or null if
successful. A dictionary must be opened to make its contents available to the spell checker.

DXL Reference Manual

882

Note that there is an upper limit on the number of dictionaries that can be opened at any one time, so it is important that
the dictionary is explicitly closed using spCloseDictionary after use.

This function will load the dictionary ACL if the dictionary type is set to spDatabaseDictionary.

The second form opens a client or database dictionary for the language specified. This opens a temporary dictionary for
management functions (such as adding and removing words), and the contents of this dictionary will not be used in normal
spell checking. The Dictionary parameter should be initialized to null before calling this function. Returns a string indicating
failure, or null if successful.

It is important that the dictionary is explicitly closed using spCloseDictionary after use.

This function will load the dictionary ACL if the dictionary type is set to spDatabaseDictionary.

close(Dictionary)

Declaration
string close (Dictionary &dict, bool saveContents)

string close (Dictionary &dict, bool saveContents, bool saveACL)

Operation

The first form closes the specified dictionary. If the saveContents parameter is true, and the user has sufficient
permissions, the contents of the dictionary will be saved. This function will not save any changes to the dictionary access
control list. Note that this function resets the dictionary parameter to null’.

The second form closes the specified dictionary. If the saveContents parameter is true, and the user has sufficient
permissions, the contents of the dictionary will be saved. If the save ACL parameter is t rue, and the dictionary type was
Database dictionary, and the user has sufficient permissions, the dictionary access control list will be saved. Note that this
function resets the dictionary parameter to *null’.

alternativeWord

Declaration

alternativeWord

Operation

Structure to encapsulate a word and its suggested alternative.

for Buffer in Dictionary

Declaration
for b in &dict do {

DXL Reference Manual

883

where:
b is a variable of type Buf fer
&dict is a variable of type Dictionary
Operation

Iterator over the words in a dictionary. The user does not need to create the Buffer before the loop; the user should not
delete the Buffer inside or after the loop.

for alternativeWord in Dictionary

Declaration
for altWord in &dict do {

}

where:
altwWord is a variable of type alternativeWord
&dict is a variable of type Dictionary
Operation

Iterator over the alternative words in a dictionary.

getWord

Declaration

Buffer getWord(alternativeWord altWord, Buffer b)

Operation

Returns the word component of an spAltWord structure. The b parameter is used to create the return value and should
be created before calling and deleted afterwards.

getAlternative

Declaration

Buffer getAlternative (alternativeWord altWord, Buffer b)

DXL Reference Manual

884

Operation

Returns the alternative word component of an spAltWord structure. The b parameter is used to create the return value
and should be created before calling and deleted afterwards.

insert

Declaration

string insert(Dictionary &dict, string word, string alternative)

Operation
Adds a word and a preferred alternative word to the specified dictionary.

Returns an error string if the user does not have sufficient rights to modify the dictionary.

remove

Declaration

string remove (Dictionary &dict, string word)

Operation
Removes a word from the specified dictionary.

Returns an error string if the user does not have sufficient rights to modify the dictionary.

isDatabaseDict

Declaration

bool isDatabaseDict (Dictionary é&dict)

Operation

Returns a flag indicating whether the specified dictionary is a database dictionary (t rue) or client dictionary (false).

Miscellaneous Spelling

anagram

Declaration

bool anagram(string word, int minLength)

DXL Reference Manual

885

Operation
Gets up to a maximum of twenty anagrams of the specified word, with the specified minimum length.
Returns a flag indicating if any anagrams were found.

Anagrams are accessed by the same method as getting spelling alternatives.

Example
if (anagram("word", 2))
{
string s
for s in alternatives do
{
print s "\n"
}
}
wildcard
Declaration

bool wildcard(string pattern)

Gets up to a maximum of twenty wildcards based on the specified pat tern. The pattern string, a’?” matches a single
etter, an matches zero or more letters.
letter, and "*" match lett

Returns a flag indicating if any wildcard matches were found.
Wildcard matches are accessed by the same method as getting spelling alternatives.
Example
if (wildcard("w?ax*d"))
{
string s
for s in alternatives do
{

print s "\n"

DXL Reference Manual

886 ‘

Spelling\Dictionary Examples

Example 1

//Check single word and show corrections

string result

result = spell ("helo")
if (!'null result)

{

print result "\n"
Buffer suggestion

for suggestion in alternatives do

{

print stringOf (suggestion) "\n"

}
Example 2

//Open dictionary and show contents

Dictionary dict
if (null open(dict, databaseDictionary))
{

print "Words\n"

Buffer word

for word in dict do

{

print stringOf (word) "\n"

print "\n"
AlternativeWord altWord

Buffer wordBuffer = create

DXL Reference Manual

887

for altWord in dict do

{
print stringOf (getWord (altWord, wordBuffer))
print " -> "

print stringOf (getAlternative (altWord, wordBuffer)) "\n"

}
delete wordBuffer
print close(dict, true)

}
Example 3

//List names of available languages

Language language
if (getLanguages > 0)
{
for language in languages do

{

print getName (language) "\n"

}
Example 4

//Open user's spell settings and show current language
SpellingOptions options

getOptions (options, userSpellingOptions)

// get the user's current language

int languagelId = getlLanguage (options)

// get the details for this language

Language language = getlLanguage (languageld)

print getName (language) "\n"
// set the language to French and save the options

print setlLanguage (options, French)

print saveOptions (options)

DXL Reference Manual

888

Example 5
//Show grammar options and active rules
SpellingOptions options

getOptions (options, userSpellingOptions)

int grammarLevel getGrammarLevel (options)

int checkingMode = getCheckMode (options)

if (grammarlevel == formalGrammar)

print "Formal \n"
else if (grammarLevel == standardGrammar)

print "Standard \n"
else

print "Informal \n"
if (checkingMode == spellingOnly)

print "Spelling Only\n"
else if (checkingMode == quickProof)

print "Quick Proof \n"
else

print "Full Proof \n"
GrammarRules rules = null

int numRules = getGrammarRules (options, rules)
int index

Buffer ruleName = create

for (index = 0; index < numRules; index++)

{

print stringOf (getName (rules, index, ruleName))

}

delete ruleName

DXL Reference Manual

u\nn

889

Chapter 35

Database Integrity Checker

This chapter describes the database integrity checker.
* Database Integrity Types

* Database Integrity Perms

Database Integrity Types

IntegrityResultsData

This type is a handle to an object that is created and returned by the checkDatabaseIntegrity perm (see below),
and which contains the results of the integrity check.

IntegrityCheckltem

This type is contained in an ordered list in the IntegrityResultsData object. Each item in the list corresponds to
the start or completion of the checking of a folder, or a discovered inconsistency (problem) with the data integrity.

IntegrityProblem

This type is contained in a list in the IntegrityResultsData object. Each item cotresponds to a problematical
reference to a hierarchy Item by one folder in the hierarchy, or, in the case of orphaned items, to an item that is not
referenced by any folder.

Problemltem

This type is contained in a list in the IntegrityResultsData object. Each item corresponds to a hierarchy Item that
has one or more IntegrityProblem records associated with it.

IntegrityltemType

This enumerated type is returned by the type (IntegrityCheckItem) and type (IntegrityProblem)
perms, to identify the meaning of each item.

Both perms can return the following values:

DXL Reference Manual

890

» referencesInvalidFolder

* referencesValidFolder

* nobDataFound

¢ orphanedItem.

e invalidProjectListEntry

* missingProjectListEntry

In addition, the type (IntegrityCheckItem) perm can return the following values:
* startedCheck

e completedCheck

» failedCheck

Database Integrity Perms

The Database Integrity functionality is only accessible to administrator users. For any other user, the
checkDatabaseIntegrity perm (see below) returns null, without performing any database integrity checks.

In general, the following perms generate run-time DXL errors when passed null arguments.

checkDatabaselntegrity(Folder&, IntegrityResultsData&)

Declaration

string checkDatabaseIntegrity(Folder& orphansFolder, IntegrityResultsDataé&
results)

Operation

Performs an integrity check on the database, and returns the results in an IntegrityResultsData object.
Parent/child references are checked for consistency, the database project list is checked fot missing items, and the database
file system is scanned for otphaned items (data that has become detached from the folder hierarchy, and is therefore no
longer accessible to Rational DOORS clients), and these items are placed in the specified orphans folder.

The perm returns null on success, and an error string on failure.
Passing a null argument to this perm causes a run-time error.
Note that the value of the Folder argument may be changed by the checking process.

For any user other than administrator, this perm will not perform any checking, and will return an error string and set results
to null.

DXL Reference Manual

891

checkFolderintegrity(Folder, IntegrityResultsData& , bool)

Declaration
string checkFolderIntegrity(Folder f, IntegrityResultsData& results, bool

recurse)

Operation

Performs a parent/child reference consistency check on the contents of the specified folder, checks for a missing entry
in the global project list if the folder is a Project, and puts the results in the IntegrityResultsData object. If the
recurse argument is true, it performs the same check on all descendants of the folder.

This perm is restricted to administrator users. Error conditions are handled as by the checkDatabaseIntegrity

perm.

canceled/cancelled(IntegrityResultsData)

Declaration

bool canceled/cancelled (IntegrityResultsData results)

Operation

Returns true if the integrity check was cancelled by the user pressing the cancel button on the progress bar.

for IntegrityCheckltem in IntegrityResultsData

Declaration
for integchkitem in integresdata

Operation

This iterator returns the IntegrityCheckItem objects in the order in which they were created during the integrity
check. Information from these objects can then be used to compile a report of the integrity check.

for Problemltem in IntegrityResultsData

Declaration

for probitem in integresdata

Operation

This iterator returns an object for each hierarchy item probi tem for which one or more problems are found.

DXL Reference Manual

892

for IntegrityProblem in Problemltem

Declaration

for integprob in probitem

Operation

This iterator returns an object for each problem found for the same item.

for IntegrityProblem in IntegrityResultsData

Declaration

for integprob in integresdata

Operation
This returns all IntegrityProblem objects in the IntegrityResultsData object. These are grouped by unique
1D.

uniquelD(IntegrityCheckltem)

Declaration
string uniquelID (IntegrityCheckItem integchkitem)

Operation

This returns the index of the item to which the IntegrityCheckItem applies. For Started/Failed/CompletedCheck
items, it refers to the folder whose contents are being checked. For others, it refers to the item in the folder that exhibits a

problem.

uniquelD(IntegrityProblem)

Declaration
string uniquelID(IntegrityProblem integprob)

Operation

This returns the index of the item that exhibits the problem.

uniquelD(Problemltem)

Declaration

string uniquelD (ProblemItem probitem)

DXL Reference Manual

893

Operation

This returns the index of the problem item probitem.

problems(IntegrityResultsData, string)

Declaration

ProblemItem problems (IntegrityResultsData integresdata, string uniquelD)

Operation

This is the converse of the unique ID perm above, returning the ProblemItem for a given index. It returns null if no
problems are listed in the IntegrityResultsData variable for the given Item index.

timestamp(IntegrityCheckltem)

Declaration
Date timestamp (IntegrityCheckItem integchkitem)

Operation

This returns the timestamp (date and time) indicating when the IntegrityCheckItem was generated.

folder(IntegrityProblem)

Declaration
Folder folder (IntegrityProblem integprob)

Operation

Returns the parent folder that contains the problematical reference. It returns null for orphaned items.

type(IntegrityCheckltem)

Declaration
IntegrityItemType type (IntegrityCheckItem integchkitem)

Operation

Can return any one of the following values:
* referencesInvalidFolder

* referencesValidFolder

* noDataFound

¢ orphanedItem

DXL Reference Manual

894

* invalidProjectListEntry
* missingProjectListEntry
* startedCheck

¢ completedCheck

» failedCheck

type(IntegrityProblem)

Declaration

IntegrityIltemType type (IntegrityProblem integprob)

Operation

Can return any one of the following values:
* referencesInvalidFolder

* referencesValidFolder

¢ noDataFound

e orphanedItem.

* invalidProjectListEntry

* missingProjectListEntry

type(Problemitem)

Declaration
IntegrityItemType type (ProblemItem probitem)

Operation

Returns the type of the first problem associated with the specified item probi tem. It can return any one of the following
values:

* referencesInvalidFolder
» referencesValidFolder

¢ noDataFound

* orphanedItem

* invalidProjectListEntry

* missingProjectListEntry

DXL Reference Manual

895

text(IntegrityCheckltem)

Declaration
string text (IntegrityCheckItem integchkitem)

Operation

Returns the error message string (if any) for the given IntegrityCheckItem.

parentReflD(IntegrityProblem | Problemitem)

Declaration
string parentRefID(IntegrityProblem integprob| ProblemItem probitem)

Operation

Returns the index of the parent referenced by the problem item’s data.

parentRef(IntegrityProblem | Problemltem)

Declaration
Folder parentRef (IntegrityProblem integprob| ProblemItem probitem)

Operation

Returns the folder that the problem item references as its parent, if the folder exists.

setParent(Problemltem, Folder)

Declaration

string setParent (ProblemItem probitem, Folder f)

Operation

Sets the parent of the item referenced by the ProblemItem to the specified folder, removing all references in any other
folders that are known to list the item in their contents (other parent folders associated with IntegrityProblems for
the same ProblemItem). The perm returns null on success, and an error string on failure. If the specified Folder does

not already contain a reference to the item, then a reference is added. The affected IntegrityProblems are marked as

repaired (see below).

If the ProblemItem type is noDataFound, then the Folder argument can be null, in which case all folder entries are
removed. If the ProblemItem type is noDataFound and the folder argument is not null, new data is created if the
item is a Project or Folder.

DXL Reference Manual

896

addProjectEntry(Problemitem)

Declaration

string addProjectEntry (ProblemItem probitem)

Operation

If the ProblemItemincludes a "missingProjectListEntry" problem, this perm adds the missing entry in the
global project list. On successful completion, it marks any missingProjectListEntry problems for the
ProblemItem as tepaired, and returns null. On failure, it returns an error message.

If the entry name matches an existing entry (project), or a top-level folder in the database, then the project is renamed by
appending a space and a decimal integer (defaulting to 1, but incremented as required to achieve uniqueness).

convertToFolder(Problemltem)

Declaration

string convertToFolder (ProblemItem probitem)

Operation

If the Problemltem includes amissingProjectListEntry problem, this perm converts the referenced Project to a
Folder. In the case of duplicate references to the item, this is done for all known references. On successful completion, the
perm marks the affected IntegrityProblems as repaired, and returns null. On failure, it returns an error message.

repaired(IntegrityProblem)

Declaration
bool repaired(IntegrityProblem integprob)

Operation

Returns true if the problem described by the specified IntegrityProblem has been repaired by the setParent
perm.

repaired(Problemltem)

Declaration
bool repaired(ProblemItem probitem)

Operation

Returns true if all of the problems associated with the specified IntegrityProblem have been repaired by the
setParent perm.

DXL Reference Manual

897

delete(IntegrityResultsData&)

Declaration

string delete (IntegrityResultsData& integresdata)

Operation

Deletes the IntegrityResultsData object and sets its value to null.

checkltem(IntegrityProblem)

Declaration
IntegrityCheckItem checkItem(IntegrityProblem integprob)

Operation

Returns an IntegrityCheckItem reference, for the given IntegrityProblem. The returned value can be passed
to any perm or function taking an IntegrityCheckItem argument.

everSectioned

Declaration

bool everSectioned({ModName |ModuleVersion})

Operation

Reports whether the specified ModName or ModuleVersion shows evidence that the module was ever save with
shareable sections. If a supplied ModuleVersion references a baseline, rather than a current version, false will be

returned.

DXL Reference Manual

898

DXL Reference Manual

Chapter 36
Discussions

This chapter describes features that operate on Rational DOORS discussions:

Discussion Types
Properties

Iterators

Operations

Triggers

Discussions access controls

Example

Discussion Types

Discussion

Represents a discussion.

Comment

Represents a comment in a discussion.

DiscussionStatus

Represents the status of a discussion. The possible values are Open and Closed.

Properties

The following tables describe the properties available for the Discussion and Comment types. Property values can be
accessed using the . (dot) operator, as shown in the following syntax:

variable.property

DXL Reference Manual

899

where:

variable is a variable of type Discussion or Comment
property is one of the discussion or comment properties
Discussion

Property Type Extracts

status DiscussionStatus The status of the discussion: whether it is open or closed.

summary string The summary text of the discussion, which may be null

createdBy User The user who created the discussion, if it was created in
the current database. Otherwise it returns null.

createdByName string The name of the user who created the discussion, as it
was when the discussion was created.

createdByFullName string The full name of the user who created the discussion, as
it was when the discussion was created.

createdOn Date The date and time the discussion was created.

createdDataTimestamp Date The last modification timestamp of the object or module
that the first comment in the discussion referred to.

lastModifiedBy User The user who added the last comment to the discussion,
or who last changed the discussion status

lastModifiedByName string The user name of the user who added the last comment
to the discussion, or who last changed the discussion
status.

lastModifiedByFullName string The full name of the user who added the last comment to
the discussion, or who last changed the discussion status.

lastModifiedOn Date The date and time the last comment was added, or when
the discussion status was last changed.

lastModifiedDataTimestamp Date The last modification timestamp of the object or module

that the last comment in the discussion referred to.

DXL Reference Manual

Property Type Extracts
firstVersion ModuleVersion The version of the module the first comment was raised
against.

Note: If a comment is made against the current
version of 2 module and the module is then
baselined, this property will return a reference
to that baseline. If the baseline is deleted, it will
return the deleted baseline.

lastVersion ModuleVersion The version of the module the latest comment was raised
against. See note for the firstVersion property
above.
firstVersionIndex string The baseline index of the first module version
commented on in the discussion. Can be used in
comparisons between module versions.
lastVersionIndex string The baseline index of the last module version
commented on in the discussion. Can be used in
comparison between module versions.
Comment
Property Type Extracts
text string The plain text of the comment.
moduleVersionIndex string The baseline index of the module version against which the
comment was raised. Can be used in comparisons between module
versions.
status DiscussionStatus The status of the discussion in which the comment was made.
moduleVersion ModuleVersion The version of the module against which the comment was raised.
Note: If a comment if made against the current version of a
module and the module is then baselined, this property
will return a reference to that baseline. If the baseline is
deleted, it will return the deleted baseline.
onCurrentVersion bool True if the comment was raised against the current version of the

module or an object in the current version.

DXL Reference Manual

901

902

Property Type Extracts

changedStatus bool Tells whether the comment changed the status of the discussion
when it was submitted. This will be true for comments which closed
or re-opened a discussion.

dataTimestamp Date The last modified time of the object or module under discussion, as
seen at the commenting users client at the time the comment was
submitted.

createdBy User The user that created the comment. Returns null if the user is not in

the current user list.

createdByName string The user name of the user who created the comment, as it was
when the comment was created.

createdByFullName string The full name of the user who created the comment, as it was when
the comment was created.

createdOn Date The data and time when the comment was created.

discussion Discussion The discussion containing the comment.

Ilterators

for Discussion in Type

Syntax

for disc in Type do {

where:
disc is a variable of type Discussion
Type is a variable of type Object, Module, Project or
Folder
Operation

Assigns the variable disc to be each successive discussion in Type in the order they were created. The first time it is run
the discussion data will be loaded from the database.

The Module, Folder and Project variants will not include discussions on individual objects.

DXL Reference Manual

903

Note: The Folder and Project variants are provided for forward compatibility with the possible future inclusion of
discussions on folders and projects.

for Comment in Discussion

Syntax

for comm in disc do {

where:
comm is a variable of type Comment
disc is a variable of type Discussion
Operation

Assigns the variable comm to be each successive comment in disc in chronological order. The first time it is run on a
discussion in memoty, the comments will be loaded from the database. Note that if a discussion has been changed by a
refresh (e.g. in terms of the last Comment timestamp) then this will also refresh the comments list.

The discussion properties will be updated in memory if necessary, to be consistent with the updated list of comments.

Operations

create(Discussion)

Declaration

string create(target, string text, string summary, Discussioné& disc)

Operation

Creates a new Discussion about target, which can be of type Object or Module. Returns null on success, error
string on failure. Also add text as the first comment to the discussion.

addComment

Declaration

string addComment (Discussion disc, target, string text, Commenté& comm)

DXL Reference Manual

904

Operation

Adds a Comment about target to an open Discussion. Note that target must be an Object or Module that
the Discussion already relates to. Returns null on success, etror string on failure.

closeDiscussion

Declaration

string closeDiscussion (Discussion disc, target, string text, Comment& comm)

Operation

Closes an open Discussion disc by appending a closing comment, specified in text. Note that target must be an
Object or Module that disc already relates to. Returns null on success, error string on failure.

reopenDiscussion

Declaration

string reopenDiscussion (Discussion disc, target, string text, Comment& comm)

Operation

Reopens a closed Discussion disc and appends a new comment, specified in text. Note that target must be an
Object or Module that disc already relates to. Returns null on success, error string on failure.

deleteDiscussion

Declaration

string deleteDiscussion (Discussion d, Module m|Object o)

Operation

Deletes the specified module or object discussion if the user has the permission to do so. Returns null on success, ot an

error string on failure.

sortDiscussions

Declaration

void sortDiscussions ({Module m|Object o|Project p|Folder f}, property, bool
ascending)

Operation

Sorts the discussions list associated with the specified item according to the given property, which may be a date, or a
string property as listed in the discussions properties list. String sorting is performed according to the lexical ordering for the
current user’s default locale at the time of execution.

DXL Reference Manual

905

If the discussion list for the specified item has not been loaded from the database, this perm will cause it to be loaded.

Note: The Folder and Project forms are provided for forward compatibility with the possible future inclusion of

discussions on folders and projects.

getDiscussions

Declaration
string getDiscussions ({Module m|Object o|Project p|Folder f})

Operation

Refreshes from the database the Discussion data for the specified item in memory. Returns null on success, or an error

on failure.

getObjectDiscussions

Declaration
string getObjectDiscussions (Module m)

Operation

Refreshes from the database all Discussions for all objects in the specified module. Returns null on success, or an error

on failure

getComments

Declaration

string getComments (Discussion d)

Operation

Refreshes from the database the comments data for the specified Discussion in memory. Returns null on success, or an

error on failure.

Note: The Discussion properties will be updated if necessary, to be consistent with the updated comments list.

mayModifyDiscussionStatus

Declaration

bool mayModifyDiscussionStatus (Discussion d, Module m)

Operation

Checks whether the current user has rights to close or re-open the specified discussion on the specified module.

DXL Reference Manual

906

baselinelndex

Declaration
string baselinelIndex (Module m)

Operation

Returns the baseline index of the specified Module, which may be a baseline or a current version. Can be used to tell
whether a Comment can be raised against the given Module data in a given Discussion.

Note: A Comment cannot be raised against a baseline index which is less than the lastVersionIndex property of
the Discussion.

isDiscussionColumn

Declaration

bool isDiscussionColumn (Column c)

Operation

Returns true if the column is a discussion column, otherwise false.

setDiscussionColumn

Declaration
void setDiscussionColumn (Column ¢, string s)
Operation
Sets the filter on the discussion column based on the supplied discussion DXL filename.
Example
Column c
for ¢ in current Module do
{
if (isDiscussionColumn (c))

{
string s = dxlFilename (c)
if (s != null)
{
Module m = edit ("/TestDiscussions ", true)

//Open a module, with some discussions in it.

DXL Reference Manual

907

if (m != null)

{
Column cNew = insert (column 3)
title (cNew, "My copy Discussion")
string home = getenv ("HOME")
string fullPath = home "\\" s ""

string contents = readFile (fullPath)

//Call dx1 PERM on that column before setting the discussion column. The
//discussion column is also a modified version of LAYOUT dxl.

dx1 (cNew, contents)
setDiscussionColumn (cNew, s)
width (cNew, 100)

refresh (m, false)

Triggers

Trigger capabilities have been expanded so that triggers can now be made to fire before or after a Discussion ora
Comment is created.

As follows:
pre post
Comment X X
Discussion X X
comment
Declaration

Comment comment (Trigger t)

Operation

Returns the Comment with which the supplied Trigger is associated, null if not a Comment trigger.

DXL Reference Manual

908

discussion

Declaration

Discussion discussion (Trigger t)

Operation

Returns the Discussion with which the supplied Trigger is associated, null if not a Discussion trigger.

dispose(Discussion/Comment)

Declaration

void dispose ({Discussion& d|Commenté& c})

Operation

Disposes of the supplied Comment or Discussion reference freeing the memory it uses.

Can be called as soon as the reference is no longer required.

Note: The disposing will take place at the end of the current context.

Discussions access controls

This section describes functions that report on access rights for discussions.

canModifyDiscussions

Declaration

bool canModifyDiscussions ({Module m| Item i| string s} [, {User |string}l])

Operation

Returns true if a given user or named user (current user if the parameter is not supplied) is allowed to create a discussion or
a comment on a discussion for the given module, item or named module. The use of item is intended for use when the

Item represents a module.

canEveryoneModifyDiscussions

Declaration

bool canEveryoneModifyDiscussions ({Module m| Item 1i})

DXL Reference Manual

909

Operation

Returns true if the discussions access list for the given module or item contains the special "Everyone" group.

addUser

Declaration
void addUser (Item i, {User ul| string s})
Operation

Adds the user or named user to the Discussion Access List for an ITtem. The updated list is not saved in the database until

saveDiscussionAccessList is called.

addGroup

Declaration
void addGroup (Item i, {Group g| string s})

Operation
Adds the group or named group to the Discussion Access List for an Item. The updated list is not saved in the database
until saveDiscussionAccessList is called.

removeUser

Declaration

void RemoveUser (Item i, {User ul| string s})

Operation

Remove the user or named user from the Discussion Access List for an ITtem. The updated list is not saved in the database

until saveDiscussionAccessList is called.

removeGroup

Declaration

void removeGroup (Item i, {Group g| string s})

Operation

Remove the group or named group from the Discussion Access List for an ITtem. The updated list is not saved in the
database until saveDiscussionAccessList is called.

DXL Reference Manual

910

saveDiscussionAccessList

Declaration

string saveDiscussionAccessList (Item 1)

Operation

This perm saves the discussion access list for the given item to the database. This perm is only successful for an
administrator or a user with Manage Database privileges. If the call is successful, a null value will be returned, otherwise a
string with an error message will be returned.

Example

// Create a Discussion on the current Module, with one follow-up Comment...
Module m = current

Discussion disc = null

create(m,"This is my\nfirst comment.","First summary",disc)

Comment cmt

addComment (disc, m, "This is the\nsecond comment.", cmt)

// Display all Discussions on the Module
for disc in m do
{
print disc.summary " (" disc.status ")\n"
User u = disc.createdBy
string s = u.name
print "Created By: " s "\n"
print "Created By Name: \"" disc.createdByName "\"\n"
print "Created On: " stringOf (disc.createdOn) "\n"
u = disc.lastModifiedBy
S = u.name
print "Last Mod By: " s "\n"
print "Last Mod By Name: \"" disc.lastModifiedByName "\"\n"

print "Last Mod On " stringOf (disc.lastModifiedOn) "\n"

DXL Reference Manual

print "First version: " (fullName disc.firstVersion) " [" //-
(versionString disc.firstVersion) "]\n"

print "Last version: " (fullName disc.lastVersion) " ["
(versionString disc.lastVersion) "]\n"

Comment c

for ¢ in disc do

{

print "Comment added by " (c.createdByName) " at " //-
(stringOf (c.createdOn)) ":\n"

print "Module Version: " (fullName c.moduleVersion) " [" //-
(versionString c.moduleVersion) "]\n"

print "Data timestamp: " (stringOf c.dataTimestamp) "\n"

print "Status: " c.status " (" (c.changedStatus ? "Changed" //-

"Unchanged") ")\n"

print "On current: " c.onCurrentVersion "\n"
print c.text "\n"

}

DXL Reference Manual

911

912

DXL Reference Manual

Chapter 37
General functions

This chapter describes functions that do not belong to any major grouping.

Error handling

Atrchive and restore
Checksum validation

Locking

HTML functions

HTTP Setver

Asynchronous HTTP requests
OSLC DXL Setrvices
Broadcast Messaging
Converting a symbol character to Unicode
Timer

Symbol character mapping

Error handling

This section defines functions for handling errors.

When parse time errors occur when running DXL scripts, the #include nesting of files is reported, in addition to the file
and line number of the error.

Take two DXL files, c: \temp\a.dxland c: \temp\b.dxl:

//file a.dxl
#include <c:\temp\b.dxl>
//file b.dxl

while //syntax error

Execute the DXL statement:

#include <c:\temp\a.dxl>

"This returns:

-E- DXL: <c:\temp\b.dxl:2> syntax error

Included from:

DXL Reference Manual

913

914

<c:\temp\a.dxl:1>
<Line:1>
-I- DXL: all done with 1 error and 0 warnings
Notice that the file containing the error is displayed first, followed by a list of ‘included from’ files.
For run-time error reports of DXL scripts, the function backtrace, or callstack, is reported.
Run the following DXL program:
void f()
{
string s

print s

void g()

g
The result will be:
-R-E- DXL: <Line:4> unassigned variable (s)
Backtrace:
<Line:9>
<Line:12>
-I- DXL: execution halted

Notice that there is a backtrace showing the function call nesting at the time the runtime error occurred.

error

Declaration

void error (string message)

Operation

Terminates the current DXL program, prints the string message in the DXL Interaction window’s output pane, and pops
up a modal dialog box, which announces the presence of errors.

DXL Reference Manual

915

Example

error "No links to trace"

lastError

Declaration

string lastError ()

Operation

Returns the last error as a string. If the noError function has been called, certain key functions do not fail and halt when
they discover an error condition. Instead, they set an error message, which can be checked by this function. Calling
lastError terminates noError.

Returns null if there are no errors.

This function can be used to turn error box messages back on after the function has been used.

Example

noError

Module m = share("Key data", false)
string openStatus = lastError

if (null openStatus) {

// we opened the module for full access
} else {

// some one has the module open for edit

}

noError

Declaration

void noError ()

Operation

Switches off DXL run-time errors until lastError is called. Any function that can produce a run-time error is affected.
Instead of failing and halting when they discover an error condition, they set an error message, which can be checked by the
lastError function.

Calling this function resets the error message to null, so you must store any potential error messages for reuse.

unixerror

Declaration

void unixerror (string message)

DXL Reference Manual

916

Operation
Similar to the error function except that the last known operating system error is printed, as well as the string message.

The name unixerror is not well chosen, because the function works correctly on all Rational DOORS platforms. The
name is derived from the UNIX perror function.

Example
Stat s = create "/no-such-file"

if (null s) unixerror "trouble with filename: "

warn

Declaration

void warn (string message)

Operation

Similar to the error function except that the program is not halted.

dxIHere()

Declaration

string dxlHere ()

Operation

This returns the file and line of DXL code currently being executed. Useful for debugging DXL scripts. It only returns the
file information for DXL scripts executed by using the #include mechanism.

Example

print dxlHere () “\n”

Archive and restore

This section defines properties, constants, and functions for use with Rational DOORS archive and restore. Two main data
types are introduced:

ArchiveItem An item in an archive

ArchiveData A list of the contents of an archive

DXL Reference Manual

917

Archive properties

Properties are defined for use with the . (dot) operator and ArchiveItem structure to extract information about
archives, as shown in the following syntax:

archiveltem.property

where:
archiveItem Is a variable of type ArchiveItem
property Is one of the archive properties

The following tables list the properties and the information they extract.

String property Extracts

archiveItemName The name of the archive item
archivelItemDescription The description of the archive item
archiveItemType The type of the archive item
Boolean property Extracts
archiveItemSelected Whether the item is selected
archiveItemSoftDeleted Whether the item is soft deleted

for archive item in archive

Syntax

for archiveltem in archive do {

}

where:
archiveltem Is a variable of type ArchiveItem
archive Is a variable of type ArchiveData
Operation

Assigns archiveItemto be each successive archive item in archive.

DXL Reference Manual

918

Example

ArchiveData archiveData

string message

message = get ("c:\\project.dpa",archiveData)
ArchiveItem archivelItem

for archiveItem in archiveData do {
if (archiveltem.archiveltemName ==
"my module") {
if (archivelItem.archiveltemSelected) {
deselect (archiveItem)

archive(modules and projects)

Declaration

string archive (string projectName,
string fileName,
bool span
[, bool incBackups,
ArchiveInclusionDescriptor allbaselines/noBaselines
[, bool serverArchive]l)

string archive (ModName modRef,
string fileName,
bool span)
[, bool incBackups,
ArchiveInclusionDescriptor allbaselines/noBaselines
[, bool serverArchive]l])

string archive (string projectName,
string user,
string password,
string fileName,
bool span)

Operation
The first form creates an archive of the project projectName, and puts it in £1IeName. The default file type is . dpa.

The second form creates an archive of the module named modRef, and puts it in £ileName. The default file type is
. dma.

DXL Reference Manual

919

The third form creates an archive of the project projectName, and puts it in £ileName. This form is supported only
for compatibility with eatlier releases.

The optional incBackups parameter can be used to specify whether database backup files are to be included in the
archive.

The optional ArchiveInclusionDescriptor parameter can be used to specify whether baselines will be included
in the archive.

The optional serverArchive parameter can be used to specify whether the archive will be created in the database
server-side archive location.

If spanis true and the path specified is on a removable disk, the archive spans multiple disks.

Example
This example archives a module:
string message = archive (module "Car", "d:\\temp\\car.dma", false)

if (!null message) {
ack message
halt

}
This example archives a project:

string message = archive ("Car project",
"a:\\car_ project.dpa", true)
if (!'null message) {
ack message
halt

archive(user list)

Declaration

string archive (string fileName,
bool span)

Operation

Creates an archive of the user list, and puts it in £1leName. The default file type is . dua.

archiveFiles

Declaration

string archiveFiles (string fileName,
string dir,
bool span)

DXL Reference Manual

920

Operation
Archives the files recursively from the directory di r into the zip file £ileName. The zip file is compatible with pkzip.

If span is true and the path specified is on a removable disk, the archive spans multiple disks.

Example
This example archives all the files in a directory:
string message

message = archiveFiles ("d:\\temp\\temp.zip",
"d:\\temp\\archive\\", false)

if (! null message) {
ack message
halt

getArchiveType

Declaration

string getArchiveType (string fileName,
ZipType& zip, [bool serverArchive])

Operation

Returns the type of archive file as one of the following constants:

zipNotArchive Archive is not a project or module
zipProjectArchive Project archive
zipModuleArchive Module archive
zipPre3ProjectArchive Project archived under a version of Rational DOORS prior to 3.0
zipPre3ModuleArchive Module archived under a version of Rational DOORS prior to 3.0
zipPrebProjectArchive Project archived under a version of Rational DOORS prior to 5.0
zipPrebModuleArchive Module archived under a version of Rational DOORS prior to 5.0
zipProjectb5Archive Project archived under Rational DOORS 5.x
zipModule5Archive Module archived under Rational DOORS 5.x
zipUserListArchive User list archive
zipUserList5Archive User list archived under Rational DOORS 5.x

Example

This example finds out whether a zip file is a project archive:

DXL Reference Manual

921

string file = "d:\\temp\\temp.dpa"
string message

ZipType zip

message = getArchiveType (file, zip)

if (!null message) {

print "Failed: " message "\n"
halt
}
if (zip == zipProjectArchive) {
print file " is a project archive from the
latest DOORS version"
} else if (zip == zipProject5Archive) {
print file " is a project archive from DOORS
version 5"
} else {
print file " is neither a version 5 nor a

version 6 project archive"

getModuleDetails

Declaration

string getModuleDetails (string fileName,

string &moduleName,

string &projectName,

[string &databaselD,

string &databaseName,]

Date &archiveDate, [bool serverArchive], [ZipType& zt] [)
Operation

Passes back module details from the archive £1IeName. Module details comprise the module name, the project name
from which it originates, and the archive date. If the optional arguments databaseID and databaseName are
supplied, the function passes back the database ID and name.

If the archive is not a module archive, the function passes back a null string for any parameter it cannot identify, and
sensible results for the rest.

The last two flags are for indicating that the archive file is on the server and an additional pointer to a variable used to return
the type of zip to the caller.

If serverArchive flagis set to true and the user does not have permission to read a server archive, an error message
will be returned.

If the call fails, the function returns an error message.

Example
This example passes back the details of the module archived in d: \temp\car.dma.

string moduleName

DXL Reference Manual

922

string projectName
Date archiveDate

string mess= getModuleDetails ("d:\\temp\\car.dma", modName,
projName, archiveDate)

if (!'null message) {
ack message
halt
} else {
string d = archiveDate
print "The archived file contains the module
" moduleName "
print "and was archived from "
print "the project " projectName " on the " d
" \n"

nn

getProjectDetails

Declaration

string
getProjectDetails (string fileName,

string &projectName,

string &projectDescription,

[string &databaselD,

string &databaseName,]

Date &archiveDate, [bool serverArchive], [ZipType& zt])

Operation

Gets project details from the archive £1leName. Project details are the name, description and archive date of the project
that was archived. If the optional arguments databaseID and databaseName are supplied, the function passes back
the database ID and name in them.

If the archive is not a project archive, the function passes back a null string for any parameter it cannot identify, and sensible
results for the rest.

The last two flags are for indicating that the archive file is on the server and an additional pointer to a variable used to return
the type of zip to the caller.

If serverArchive flagis set to true and the user does not have permission to read a server archive, an error message
will be returned.

If the call fails, the function returns an error message.

Example

This example gets the details of the project archived in a: \car project.dpa.
string projectName

string projectDescription

DXL Reference Manual

Date archiveDate
string databaseId

string databaseName

message=getProjectDetails ("a:\\car project.zip", projectName,

databaseName,

databaselId

projectDescription, databaseld,
archiveDate)
if (!null message) {
ack message
halt
} else {
string d = archiveDate ""
print "The archived file contains the project
"projectName
print "with the description "
projectDescription
print " from the database called "
databaseName
print " with database ID"
print "on the "™ d "\n"

getUserlistDetails

Declaration
string getUserlistDetails (string
string
string
Date

Operation

fileName,
&databaselId,
&databaseName,
&archiveDate)

Gets user list details from the archive fiIeName. User list details are the ID and name of the database from which the

archive was taken.

If the archive is not a user list archive, the function passes back a null string for any parameter it cannot identify, and

sensible results for the rest.

If the call fails, the function returns an error message.

restore(archive)

Declaration

string restore (ArchiveData archive

[,string archiveName],

[bool serverArchivel)

DXL Reference Manual

923

924

Operation

Restotes archive to archiveName. If the operation succeeds, returns a null string; otherwise, returns an error

message.

For a project archive, if you specify archiveName, this must be a non-existent location. The function then creates a
project with this name, and restores the contents of the archive but not the project itself, into the new project. If you do not
specify archiveName, the function uses the name of the archived project, and restores it to the current location.

For a module archive, if you specify archiveName, this must be an existing location. The function then creates the
module archive in this existing folder or project. If you do not specify archiveName, the function restores the module to
the current location.

For a user list archive, if you specify archiveName, it is ignored.
The serverArchive flag is an additional flag indicating that the atchive file is on the server.

If serverArchive flagis set to true and the user does not have permission to read a server archive, an error message
will be returned.

restoreModule

Declaration

string restoreModule (string fileName
[,string moduleName], [bool serverArchivel])

Operation
Restores a module from the archive file £iIeName. Optionally renames the module to the name moduleName.

If you are restoring a module without defining its name, it can only be restored into a project that does not already contain a
module of that name.

If you are restoring a module with a defined name, the moduleName must be unique within the restored folder.
The flag serverArchive indicates that the archive file is on the server.

If serverArchive flagis set to true and the user does not have permission to read a server archive, an error message
will be returned.

Example
This example restores a module from d: \temp\car.dma.
string message = restore "d:\\temp\\car.dma"

if (!'null message) {
ack message
halt

}

This example restores a module from d:\temp\car.dma to the module Car user reqts 2.

string message = restore ("d:\\temp\\car.dma", "Car user reqts 2")

DXL Reference Manual

925

if (!'null message) {
ack message
halt

restoreFiles

Declaration

string restoreFiles(string fileName,
string destination)

Operation

Restores all the files from the zip file £i1leName to the specified directory destination.

Example
This example restores all the files from a zip file.

string
message = restoreFiles ("d:\\temp\\temp.zip",
"d:\\temp\\new\\")

if (message !=null) {
ack message
halt

restoreProject

Declaration

string
restoreProject (string fileName
[,string projectName
[,string projectDescription]], [bool serverArchivel])

Operation

Restores a project from the archive file £11eName, optionally renaming the project to projectName with the
description projectDescription.

If you are restoring a project without defining its name, it can only be restored into a database that does not already contain
a project of that name.

If you are restoring a project with a defined name and description, the projectName must be unique.

Example
This example restores the project Car project from the file a:\car project.dpa.

string message = restore "a:\\car project.dpa"

DXL Reference Manual

926

if (!'null message) {
ack message
halt
}
This example restores a project from a: \car project.dpa to the project Car project 2 with the description

Restored project.

string message=restore("a:\\car project.dpa", "Car project 2", "Restored
project")
if (message != null) {

ack messagehalt

restoreUserlist

Declaration

string restoreUserlist (string fileName)

Operation

Restores the user list from the archive file £1IeName.

select(archive item)

Declaration

bool select (Archiveltem item)

Operation

Selects 1 tem. If the operation succeeds, returns t rue; otherwise, returns false.

deselect(archive item)

Declaration

bool deselect (Archiveltem item)

Operation

Deselects 1tem. If the operation succeeds, returns true; otherwise, returns false.

DXL Reference Manual

927

rename(archive item)

Declaration

bool rename (Archiveltem item,
string newName)

Operation

Renames item to newName. If the operation succeeds, returns t rue; otherwise, returns false.

get(archive data)

Declaration
string get (string fileName,

ArchiveData &archive, [bool serverArchive])
Operation

Retrieves the archive data structure from the given file. If the operation succeeds, returns a null string; otherwise, returns an

error message.
The serverArchive flag indicates that the archive file is on the server.

If serverArchive flagis set to t rue and the user does not have permission to read a server archive, an error message

will be returned.

canCreateServerArchive

Declaration
bool canCreateServerArchive ()

Operation

Returns true if the current user has permission to create an archive at the server and the server has been set up with the
archive directory defined.

canRestoreServerArchive

Declaration

bool canRestoreServerArchive ()

Operation

Returns true if the current user has permission to restore an archive from the server and the server has been set up with
the atchive directory defined.

DXL Reference Manual

928

canReadServerArchiveFile

Declaration

string canReadServerArchiveFile (string s)

Operation

Used to test for an archive existing and being available on the server before attempting a restore operation. The filename
supplied is relative to the archive directory on the server.

Returns NULL if the file exists and can be read or a non-null error message if the specified file cannot be accessed on the
server.

canWriteServerArchiveFile

Declaration

string canWriteServerArchiveFile (string s)

Operation

Used to test for an archive being available to write to on the server before attempting an archive operation. The filename
supplied is relative to the archive directory on the server.

Returns NULL if the file can be written or a non-null error message if the specified file cannot be written to on the server.
Overwriting server archives is not permitted so if the file already exists, this will return an error message.

canUseServerArchive

Declaration

string canUseServerArchive ()

Operation

Used to return a string indicating if server archiving by the current user is allowed.

Returns a string indicating if server archiving is permitted and, if it is not permitted, why it is not.

The reasons server archiving may not be permitted are:

Message Description

Setver archiving not allowed - DOORS_ARCHIVE_LOCATION has not been defined
ditectory not defined

Setver archive directory does The directory defined in DOORS_ARCHIVE_LOCATION

not exist does not exist or is not a sub-directory of SERVERDATA.
No permission to restore a The archive directory is valid but the user does not have
server archive permission to archive on the server.

DXL Reference Manual

929

If archiving is permitted, the following message is returned:

User has permission and directory is defined

Checksum validation

The checksum validation functions enable you to create a validation record for a module before you export or archive the
module. The checksum function generates XML files in a compressed file with a .zip extension. The ouput identifies a
module name, description, and location. The output also lists selected views for the module and the object attributes that
are used in those views. Links, OLE objects, and images are not referenced in the generated output. When the module is
later imported or restored to the project, you can then compare the checksum validation record with the module to identify
changes to the text or other attribute values in the selected views.

createChecksumFile

Declaration

bool createChecksumFile (DB box, Module mod, Skip viewList, string fileName,
sring& returnStr)

Operation

Creates a compressed file with a .zip extension that contains XML files that describe a module, selected views within the
module, and object attributes that are associated with objects in those views.

The createChecksumFile declaration includes the following parameters:

* The DB box parameter is optional. This parameter is used to display a progress bar while the checksum file is
generated. If this parameter is not included in the declaration, then the progress bar is not shown.

* TheModule mod parameter identifies the module from which the checksum file is generated.

* The Skip viewList parameter lists the views that are selected in the Create Checksum dialog box. At least one
view is required to generate a checksum file.

* The string fileName parameter identifies the file path that is chosen by user for storing the checksum
comptessed file. If this field is empty or an invalid path, then a checksum file is not generated.

* The string& returnStr parameter is optional. This parameter contains errors that were encountered by the create
operation, if any. If the operation completes successfully, the return value is an empty string.

The createChecksumFile function returns a boolean value to indicate if the create operation completed successfully.
The value is True if the operation is successful. If the string& returnStr parameter is included, errors are displayed.

Example 1 - without progress bar
string modName = "myModuleName" // name of the module of your choice

Module modRef = read (modName, false)

int skipNo = 0

DXL Reference Manual

930

Skip viewListFromModule = create

// Enter the Standard View First

put (viewListFromModule, skipNo++, "Standard view")

//Now other views from module

string theViewName

for theViewName in views (modRef) do {
// clear the noError

put (viewListFromModule, skipNo++, theViewName)

string locationOfOutput = "C:\\temp\\checksumfile.zip" // or C:\temp

string createErrString

bool isSuccess = createChecksumFile (modRef, viewListFromModule,
locationOfOutput, createErrString)

Example 2 - with progress bar

// Use definition of module, skip, and string from Example 1

// Include optional parameter to display progress bar:

DB box = create ("Create Checksum ", styleCentred|styleAutoparent|styleThemed)
realize box

bool isSuccess = createChecksumFile (box, modRef, viewListFromModule,
locationOfOutput, createErrString)

loadChecksumFile

Declaration

bool loadChecksumFile (Module mod, Skipé& outViewList, string fileName, stringé&
returnStr)

Operation

The loadChecksumFile function is preparation for the compareChecksumFile function. The loadChecksumFile function
validates the module information and provides a list of the views that are available for the checksum comparison.

The loadChecksumFile declaration includes the following parameters:

DXL Reference Manual

931

* The Module mod parameter identifies the module that is associated with the checksum file.

* Skip& outViewList is the resulting out parameter. This list contains the views that are present in the checksum
package. The user can choose one or more views from this list to run the checksum compatison on.

* The string fileName parameter contains the full path and file name of the stored checksum package, which is a
compressed file with a .zip extension. The value must be a valid path and file.

* The string& returnStr parameter is optional. This parameter contains errors that were encountered by the create
operation, if any. If the operation completes successfully, the return value is an empty string.

The loadChecksumFile function returns a boolean value to indicate if the load file operation completed successfully.
The value is True if the operation was successful. If any error is found, then the return value is False. If the string&
returnStr parameter is included, errors are displayed.

Example

string modName = "myModuleName" // name of the module of your choice

Module modRef = read(modName, false)

Skip outViewlList = create

string checksumFile = "C:\\temp\\checksumfile.zip" //The valid link to existing

checksum zip file.
string loadErrString

bool isSuccess = loadChecksumFile (modRef, outViewList, checksumFile,
loadErrString)

compareChecksumFile

Declaration

bool compareChecksumFile (DB box, Module mod, Skip viewList, string fileName,
string& returnStr)

Operation

Enables the user to compare the checksum validation record with the related module to identify changes to the text or other
attribute values in the selected views.

The compareChecksumFile declaration includes the following parameters:

e The DB box parameter is optional. If this parameter is included, the progress bar and Checksum Results dialog box are
shown while the compatison process is running. The Checksum Results dialog box only shows comparison results. If
the compatison process is not successful or completed, the error reasons are returned in the returnStr parameter.

* TheModule mod parameter identifies the module that is associated with the checksum file. This parameter is passed
to verify that the module in the Compare Checksum dialog box is the same as the module that is read from the XML
content of the checksum package.

* The Skip skipViewList parameter provides the names of all the selected views in the Compare Checksum dialog
box view list.

DXL Reference Manual

932

* The String fileName parameter specifies the full path and file name for checksum package, which is a
compressed file with a .zip extension. If this parameter is NULL then the checksumPackageFullPath thatis
passed with the loadChecksumFile perm is used while comparing the views.

* The string& returnStr parameter is optional. If this parameter is included, it returns the error strings that
indicate why the comparison process did not run or was not completed successfully. If the parameter DB box is not
included, then the Checksum Results dialog box is not displayed and the comparison results are returned in this
returnStr parameter.

The compareChecksumFile perm returns a boolean value. This value is True if the comparison operation completed
successfully, even if some comparisons failed. The value is False if the comparison operation was not performed.

Example 1 - without the progress bar

string modName = "myModuleName" // name of the module of your choice

Module modRef = read (modName, false)

Skip viewlList = create

string checksumFile = "C:\\temp\\checksumfile.zip" //The valid link to existing

checksum zip file.
string loadErrString

bool isLoadSuccess = loadChecksumFile (modRef, viewList, checksumFile,
loadErrString)

if (isLoadSuccess) {
string compareResults

bool isCompareSuccess = compareChecksumFile (modRef, viewList,
checksumFile, compareResults)

if (isCompareSuccess) {

print "/n compareResults = /n" compareResults "/n"

Example 2 - with the progress bar

// Picking up after load Success from previous example
// Include optional parameter to display status messages:
if (isLoadSuccess) {

string compareResults

DB box = create ("Compare Checksum ",
styleCentred|styleAutoparent |styleThemed)

realize box

bool isSuccess = compareChecksumFile (box, modRef, viewList, checksumFile,
compareResults)

DXL Reference Manual

933

Locking

This section defines functions that are used by the manipulation of data locks. They are rarely needed by normal DXL

programs.

Most use the data types LockList and Lock.

Note: To obtain a type Lock handle, you must use the for lock in lock list loop.

Lock properties

Properties are defined for use with the . (dot) operator and a lock handle, as shown in the following syntax:

lock.property

where:
lock

property

Is a variable of type Lock

Is one of the lock properties

The value of property can be one of the following:

String property Extracts

annotation Annotation associated with the lock

host Host name to which the lock is assigned

id Lock id, which distinguishes shared locks on an item

resourceName The name of the locked resoutce
For items in the module hierarchy, this is the unqualified name of the
item.
For locks on the user list, this is User List (Read) or User
List (Write). Separate read and write locks are used, for example,
while archiving and restoring the user list.

user The user account to which the lock is assigned

Boolean property

Extracts

childLocked

Whether the lock is associated with a lock on a descendant of the
locked item

DXL Reference Manual

934

Boolean property Extracts

removed Whether the lock has been removed

Date property Extracts

date Date the lock was created

Integer property Extracts

lockMode One of the values: 1lockShare, lockWrite, or lockRemoved

Item property Extracts

item Handle to the locked item, which can be used to access the name of the
item

connectionId An integer value equal to the connection ID associated with the lock

Alllocks in a lock list are initially in either lockShare or lockWrite mode. To change them to lockRemoved, use
the remove (lock) function.

Example
Lock lockItem
string username
int connId
LockList lcklist = getLocksInDatabase (true)
for lockItem in lcklist do {
username = lockItem.user
connId = lockItem.connectionId

print "User: " username ", Connection ID: " connId "\n"

getLocksInDatabase

Declaration

LockList getLocksInDatabase ([bool allUsers])

DXL Reference Manual

935

Operation

Returns a lock list of type LockList, which lists lock information on locks held anywhere in the database except for locks
on items that the user currently has open. If al1Users is true, the list contains locks held by all users. If al1Users is
false, or missing, the list contains only locks held by the current user.

You must delete the LockList that is returned by this function before you run another function that returns a
LockList.

Example
LockList 1llist

1llist = getLocksInDatabase (true)

getLocksInFolder

Declaration

LockList

getLocksInFolder ({Folder|Project} reference,
bool recurse
[,bool allUsers])

Operation

Returns a lock list of type LockLi st, which lists lock information on locks held anywhere in the folder or project
reference. If recurseis true, the list contains all locks on descendants of the folder. If allUsers is true, the list
contains locks held by all users. If al1Users is false, or missing, the list contains only locks held by the current user.

You must delete the LockList that is returned by this function before you run another function that returns a
LockList.

Example
LockList 1llist

llist = getLocksInFolder (current project, true, true)

getLocksInModule

Declaration

LockList getLocksInModule (ModName modRef
[,bool allUsers])

Operation

Returns a lock list of type LockList, which lists lock information on locks held anywhere in module modRe . If
allUsersis true, the list contains locks held by all users. If allUsersis false, or missing, the list contains only
locks held by the current user.

You must delete the LockList that is returned by this function before you run another function that returns a
LockList.

DXL Reference Manual

936

isLocked

Declaration

bool isLocked(ModName modRef)

Operation
Returns true if the specified module is locked by a user; otherwise returns false.

Note that this function returns t rue even if a specified module is locked by the current user.

Example

print isLocked (module "New Module")

isLockedClosed

Declaration
bool isLockedClosed (ModName modRef)

Operation

Returns true if the current user has an exclusive lock on module m, and the module is not currently open. Otherwise,

returns false.

isLockedByUser

Declaration
bool isLockedByUser (Object o)

Operation
Returns true if the specified object is locked by the current user when in edit shareable mode. Otherwise, returns false.

This function is not equivalent to checking whether the current user can modify the given object.

lock(module)

Declaration

string lock(ModName modRef
[,string annotation])

DXL Reference Manual

937

Operation

Places an exclusive lock on module modRe £, without opening it. Also places share locks on all of its ancestor folders (up to
the nearest project). The optional second argument associates an annotation with the lock, which can be retrieved through
the annotation property (see “Lock properties,” on page 933). If annotation is a null string or only white space characters,
no annotation is stored with the lock.

If the user does not have modify, create, delete, or control access to modRef, the call fails.

If the operation succeeds, returns null; otherwise, returns an error message.

Example
string errormess
errormess = lock(module "My module")

if (null errormess)

print "My module locked.\n"
else

print errormess "\n"

lock(object)

Declaration

string lock(Object o [, boolé& unavailable])

Operation

Locks object o. If supplied, the unavailable parameter is set to true if the section cannot be locked due to a lock not
being available. This is usually because another client has locked the section. If the operation succeeds, returns null;
otherwise, returns an error message.

This function only makes sense when 0 is in a module that has been opened shareable.

Example

if (isShare current) {
string mess = lock current Object

if (!'null mess)
print "lock failed: " mess "\n"

unlock(module)

Declaration

string unlock (ModName modRef)

Operation

Removes an exclusive lock placed on module m by the same user. Fails if the module is open or this user has no exclusive
lock on it. Removes the associated share locks on ancestor folders.

DXL Reference Manual

938

If the operation succeeds, returns null; otherwise, returns an error message.

Example
string errormess
errormess = unlock (module "My module")

if (null errormess)

print "My module unlocked.\n"
else

print errormess "\n"

delete(lock list)

Declaration

string delete (LockList 1ist)

Operation

Frees up memory used by the variable 11 st. If list is null, this function has no effect.

Example
LockList myList = getLocksInDatabase

delete myList

remove(lock)

Declaration

string remove (Lock lock)

Operation

Attempts to remove 1ock from the database. Any associated locks in the lock list are also removed. Associated locks are
locks on descendants of a folder, and associated locks on ancestor folders that are not associated with locks on other
descendants.

If the operation succeeds, returns a null string; otherwise, returns an error message.

sharelLock

Declaration

string sharelLock ({Folder|Project} reference,
string &lockID
[,string annotation])

DXL Reference Manual

939

Operation

Places a share lock on the folder ot project reference, until it is removed by the remove (lock) function. It does not
lock ancestor folders. It passes back the lock ID in the second argument. The optional third argument associates an
annotation with the lock, which can be retrieved through the annotation property (see “Lock properties,” on page 933).

If the operation succeeds, returns a null string; otherwise, returns an error message.

for lock in lock list

Syntax

for lock in list do {

}

where:
lock Is a variable of type Lock
list Is a variable of type LockList
Operation

Assigns the vatiable Jock to be each successive lock in 11ist.

Example

Lock lockItem

string username

LockList lcklist = getLocksInDatabase (true)

for lockItem in lcklist do {
username = lockItem.user
print username "\n"

Unlock object functions

Declaration
bool unlockDiscard{All|Section} (Object o)

bool unlockSave{All|Section} (Object o)

Operation

These functions unlock sections. The functions unlockDiscardAll and unlockSaveAll unlock all sections in the
module containing o. The functions unlockDiscardSection and unlockSaveSection unlock the section
containing o.

The functions either discard changes or save changes before unlocking according to the function name.

DXL Reference Manual

940

If the operation is successful, returns true;

otherwise, returns false.

requestLock

Declaration
string requestLock (Module m,
string requestLock (Module m,

string requestLock (Object o,

Operation

Object o, bool exclusive, string msg, bool alert)
bool exclusive, string msg, bool alert)

string msg, bool alert)

The first form places a lock request on the specified module/object in the specified lock mode. If exclusive is set to
true, an exclusive lock will be requested, otherwise a share lock will be requested. msg is the message (if any) to be sent.

The second form requests a lock on the module itself.

The third form requests a lock on the section containing the specified object.

All return errors on failure.

HTML functions

This section defines functions that create HTML to represent a Rational DOORS object attribute, and set an attribute value

based on HTML..
htmlText
Declaration
string htmlText (Buffer &htmlOutput,
Column c,
Object o,

bool showURL,

bool newWin,

string prelLink,
string postLink)

string htmlText (Buffer &htmlOutput,

attrRef,

bool showURL,

bool newWin,

string prelLink,
string postLink)

where attrRef is in one of the following formats:

(Object o). (string attrName)

DXL Reference Manual

(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

The first form fills the buffer htmIOutput with a fragment of HTML representing the object o in column ¢. The second
form does the same for the given object attribute.

The argument showURL controls whether URLs in the text are shown as hyperlinks. The argument newWin controls
whether the hyperlinks should open a new browser window.

If showURL is true, the strings preLink and postLink contain text that appears before the hyperlink and after the
hyperlink respectively.

If the call succeeds, returns a null string; otherwise, returns an error message.
Example

Buffer b = create

Object o = current Object

htmlText (b, o."Object Text", true, false, "", "")

print b"\n"

setAttrFromHTML

Declaration

string setAttrFromHTML (Buffer &html,
attrRef,

where attrRef is in one of the following formats:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

Sets the value of the specified attribute based on the HTML in the buffer.

If the call succeeds, returns a null string; otherwise, returns an error message.

Example

Buffer b = create

Object o = current Object
b = "hello world"

setAttrFromHTML (b, o."Object Text")

DXL Reference Manual

941

942 ‘

HTTP Server

This section defines functions for making HTTP requests to a URL.

Sample files are included in the Rational DOORS client installation. The sample file hierarchy.dxl showshow to use
the OSL.C DXL service to obtain information about module hierarchy. The sample file sample get.dx1l demonstrates
other HTTP Setver functions. The default location of the sample files is C: \Program
Files\IBM\Rational\DOORS\9.version\lib\dxl\example\oslc. The path and version number might
vaty in your installation.

HttpRequest

Declaration

HttpResponse HttpRequest (HttpVerb verb, string url, HttpBody body, HttpHeader
header)

Operation

This function makes the HTTP request to the provided URL. If the URL is to a server that is configured for Open Services
for Lifecycle Collaboration (OSLC) the request is authenticated with OAuth, and automatically includes the configured

OSLC version in the request header, as OSLC-CORE-VERSION. To determine if the server is configured for OSLC, see
the Database Properties > Collaboration tab in the Rational DOORS client. The body and header parameters are optional.

Example

This example demonstrates access to a public URL with no OAuth authentication. The use of HttpHeader is demonstrated,
but is optional and can be null. After the request is sent, a response is returned. The example reads the HTML code from
the response body and displays it. Optional cleaning of the memory is also demonstrated.

HttpHeader h = create

string k = "Accept"
string v = "x/x"
if (header != null)

{
add (h, k, v)

}
HttpResponse resp = HttpRequest (HttpGet, "https://www.google.com", null, h)

if (resp != null && resp.isOk)

{
HttpBody b = resp.body
Buffer buf = b.value
ack "Request succesfull\n”
ack stringOf (buf)
delete buf

DXL Reference Manual

943

else

ack "Request failed"
}

delete h
delete resp

HttpRequest(timeout)

Declaration

HttpResponse HttpRequest (HttpVerb verb, string url, HttpBody body, HttpHeader
header, int timeout)

Operation

This function is the same as httpResponse HttpRequest(HttpVerb, string, HttpBody, HttpHeader), but it includes an
additional timeout argument. The request is performed as usual but with the specified timeout instead of the default one.

The timeout argument is in seconds.

HttpRequest(error message)

Declaration
string HttpRequest (HttpVerb, string, HttpBody, HttpHeader, HttpResponse&)

Operation
This function is the same as httpResponse HttpRequest(HttpVerb, string, HttpBody, HttpHeader), but it returns an

error message in case of failure.

HttpRequest(timeout and error message)

Declaration

string HttpRequest (HttpVerb, string, HttpBody, HttpHeader, int, HttpResponse&)
Operation

This function is the same as HttpResponse HttpRequest(HttpVerb verb, string url, HttpBody body, HttpHeader
header, int timeout), but it returns an error message in case of failure.

DXL Reference Manual

944

HttpVerb

The HttpVerb is an enumeration that represents the type of HTTP request:
HttpDelete
HttpGet
HttpHead
HttpPut

HttpPost

DXL Reference Manual

945

HttpResponse

The HttpResponse object represents the resp

Properties

onse to an HTTP request.

Property

Returns

HttpHeader header ()

HttpBody body ()

An HttpHeader object that stotes a map of key-value string pairs.

Any data returned by the HTTP request in its body as an
HttpBody object.

int code () The HTTP response code.
bool 1isOk() True for a successful HTTP request; for example, if the return
code is 200 or 201.
Operations
Operation Description

void delete (HttpResponses&)

Call to delete the HttpResponse object that is returned by
HttpRequest. This operation is not mandatory.

HttpHeader

The HttpHeader object represents a collection of header key-value of a HT'TP request or response.

Operations

Operation

Description

string get (HttpHeader header,
string key)

void add (HttpHeader& header,
string key, string value)

void add (HttpHeader& header,
HttpHeaderEntry entry)

HttpHeader create()

void delete (HttpHeaderé&)

Returns a header pair value by its key.

Add a header key-value pair to header.

Add a header key-value pair to header from
HttpHeaderEntry.

Call to create a HttpHeader object.

Call to delete the HttpHeader object returned by create, this
isn't mandatory.

DXL Reference Manual

946

Iterators
Iterator Description
for HttpHeaderEntry in Returns all HttpHeaderEntry in the header. The order is
HttpHeader do undetermined.
HttpHeaderEntry

HttpHeaderEntry represents a header key-value pair.

Properties
Property Returns
string value () The HttpHeaderEntry value.
string key () The HttpHeaderEntry key.
Operations
Operation Description
void delete (HttpHeaderEntryé&) Call to delete the HttpHeaderEntry object that is
returned by create. This operation is not
mandatory.
HttpHeaderEntry create() Call to create a HttpHeaderEntry object.
void setValue (HttpHeaderEntrys Set the HttpHeaderEntry value.

entry, string value)

void setKey (HttpHeaderEntry& entry, Set the HttpHeaderEntry key.
string value)

HttpBody

The HttpBody object represents the body (data part) of an HTTP request or response.

DXL Reference Manual

947

Properties

Property Returns

Buffer value () The content of the body.

int size() Returns the number of character in the body.
Operations

Operation Description

void setValue (HttpBodyé& Set the content of the body.

body, Buffer value)
HttpBody create () Call to create a HttpBody object.

void delete (HttpBodyé&) Call to delete the HttpBody object that is returned by create. This
operation is not mandatory.

Asynchronous HTTP requests

These functions are used to make HTTP requests asynchronously so that the main Rational DOORS process is not
blocked. With these functions, the DXL user interface is still be responsive while an HTTP request is in progress.

Future HttpRequest

Declaration
Future HttpRequest (HttpVerb verb, string url, HttpBody b, HttpHeader h)
Where Future is an object that contains a value that will be delivered in the future.

Operation

This function starts an HTTP request but instead of waiting for a response, it immediately returns a Future object. The
Future object can be checked for readiness later. The HTTP response can be fetched from the Future object when it is

ready.
Property Description
bool isReady (Future f) Returns true if the Future is delivered.
int getFullfilledTime (Future f) Returns the timestamp for the Future's delivery time.

DXL Reference Manual

948

Operation Description
HttpResponse Returns "HttpResponse' value inside the Future. The
getValueHttpResponse (Future f) Future needs to be ready before this call is made.

Helper operations for using the asynchronous HTTP request perm in layout DXL columns:

Operation Description

void refresh (Future f, Object o, Re-executes the layout DXL for a cell after the

Column c, int elapsed) Future is fulfilled. After the Future is delivered, this
operation:

* Invalidates the displayable object cache for the
cell (Object o, Column c).

* After 'elapsed' seconds, refreshes everything in
the current view set. This causes the layout DXL
execution, because the cell does not have a

displayable object cache.

Future getData (Object o, string key) Retrieves a Future.

void setData(Object o, string key, Puts a Future inside object's "client data". This keeps
Future f) the Future for successive layout DXL executions.
void removeData (Object o, string Removes a Future from object's "client data".

key)

Dialog box example:
// Async http request example with dxl timer
DB box
DBE htmlViewElem

DBE timerElem

string url = "http://en.m.wikipedia.org/wiki/DOORS"

// Make an async request put the future in object client data

Future f = HttpRequest (HttpGet, url, null, null)
// Will be called in every second,
// when the response is delivered it will stop the timer.

void onTimer (DBE)

DXL Reference Manual

949

if (isReady(f))

{
HttpResponse r = getValueHttpResponse (f)
set (htmlViewElem, r.body.value)

stopTimer (timerElem)

else

Buffer b = create
b = "<h3>LOADING URL: " url "</h3>"
set (htmlViewElem, b)

delete Db

// Prepare a dialog with a timer

box = create "Async HttpRequest Example!"

htmlViewElem = htmlEdit (box, "", 600, 400)
timerElem = timer (box, 1, onTimer, "check response timer!")
show box

Layout DXL example:

// This is a layout DXL example. For each objects in the module, it fetches
the 'url' and displays its status code.

// Usage: Add a column via "Edit -> Columns -> New... -> Layout DXL -> Browse
-> New -> (Paste this)"

Column ¢ = currentColumn

string url = "http://www.ibm.com/robots.txt"

void startRequest (string url)

{
Future f = HttpRequest (HttpGet, url, null, null)

setData (obj, "KEY PREF " url, f)

DXL Reference Manual

950

refresh(f, obj, ¢, 5 /*seconds timeout*/)

display("Started request:\n\t" url "\n")

Future f = getData(obj, "KEY PREF " url)
if (null f) // No request made yet
{
startRequest (url)
}
else if (isReady(f))

{

if (intOf today - getFullfilledTime (f) > 30) // Ready but expired (> 30
seconds)

removeData (obj, "KEY PREF " url)
startRequest (url)
}

else // Ready and fresh response!

{
HttpResponse r = getValueHttpResponse (f)

display ("Response received with status code: " r.code "\n")

}

else // Waiting for a response!

{
display("Started request:\n\t" url "\n")

DXL Reference Manual

951

OSLC DXL Services

OSLC DXL Setvices ate DXL scripts that can be run by making an Open Setvices for Lifecycle Collaboration (OSLC)
request to an instance of Rational DOORS Web Access. A service must be added to the DOORS database before it can be
run. DXL functions are available to add, remove, and return information about DXL services. For mote information and
examples, see the help topic: OSLC DXL services for Rational DOORS.

OSLCDXLService properties

Properties are defined for use with the . (dot) operator and a OSLCDXLService handle, as shown in the following syntax:

variable.property

where:
variable Is a variable of type OSLCDXLService
property Is one of the OSLCDXIService properties

The following table lists the OSLCDXLService properties and the information that they extract or specify.

For further details on specifying information, see the setDxIServiceResult function.

DXL Reference Manual

https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.6.1/com.ibm.doors.install.doc/topics/r_dxl_services.html

952

Properties
Property Extracts
name The name of the setvice, as displayed by OSLC service discovery.
description The explanation of what the service does. This can be returned by
using the GET function on the service.
dx1lString Either a fragment of DXL that can be run or a collection of
functions, one of which can be called by running
"functionName".
functionName The name of a function (in dxIString) to run. If this is NULL, then
dxIString will be treated as runnable DXIL..
Iterators
Iterator Description

for OSLCDXLService Loop that iterates over available DXL services.
in database do

setDxIServiceResult

Declaration

void setDxlServiceResult (string result)

Operation

Sets the result string that is returned as a result of the service that is being run.

Example

For more information and an example, see the help topic: OSLC DXL services for Rational DOORS.

addOrUpdateOSLCDXLService

Declaration

string addOrUpdateOSLCDXLService (string name, string description, string
dx1String, string functionName)

Operation

Adds a new service to the list of configured DXL services or updates an existing one.

Example

For more information and an example, see the help topic: OSLC DXL services for Rational DOORS.

DXL Reference Manual

https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.6.1/com.ibm.doors.install.doc/topics/r_dxl_services.html
https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.6.1/com.ibm.doors.install.doc/topics/r_dxl_services.html

953

removeOSLCDXLService(string key)

Declaration

string removeOSLCDXLService (string key)

Operation

Removes a service from the configuration. Finds the service by its key (that is, name).

removeOSLCDXLService(OSLCDXLService service)

Declaration

string removeOSLCDXLService (OSLCDXLService service)

Operation

Removes a service object from the configuration.

Broadcast Messaging

sendBroadcastMessage

Declaration

string sendBroadcastMessage (string msg)

Operation

Sends a message to the database server for broadcasting to all connected clients. Returns an error string if broadcasting fails,
otherwise returns null. The executing user must have the Manage Database privilege.

Example
if (null sendBroadcastMessage (“Please save your work and logout immediately.”)) {

ack “Message sent”

DXL Reference Manual

954 ‘

Converting a symbol character to Unicode

symbolToUnicode

Declaration

char symbolToUnicode (char symbolChar, bool convertAllSymbols)

Operation

Converts a symbol character to its Unicode equivalent. If convertAllSymbols is false, only symbols with the Times
New Roman font equivalents are converted. This function returns a unicode character, or charIn if there is no equivalent

character.

DXL Reference Manual

955

Timer

timer

Declaration

DBE timer (DB parent, [int/real] timer duration in seconds) , void(DBE)
callbackFn, string timer name)

Operation
Creates a timer element that executes the callback function every 'n' seconds.
Example
The following example creates a timer with a two-second interval and callback cb that prints a message.
void cb (DBE x) {
print "timer event,"

}
DBE dbeTime = timer (dbParent, 2, cb, "")

stopTimer

Declaration:
bool stopTimer (DBE timer)

Operation

Stops the execution of a specific timer. Returns true if the timer was running and is now stopped.

Example
This example stops timer.

stopTimer (dbeTimer)

startTimer

Declaration

bool startTimer (DBE timer)

Operation

Restarts the execution of a specific timer. Returns true if the timer was stopped and is now restarted.

DXL Reference Manual

956

Example
This example restarts the timer.

startTimer (dbeTimer)

isTimer

Declaration

bool isTimer (int id)

Operation

Returns TRUE if id is a valid action index and it is a timer.

getTimerName

Declaration

string getTimerName (int id)

Operation

Returns a string containing the name of the timer (or NULL if not a timer).

getTimerinterval

Declaration

int getTimerInterval (int id)

Operation

Returns the number of seconds between each execution of the timer.

getTimerlD

Declaration
int getTimerID (DBE t)

Operation

Returns the timer £ ID or —1 if t is not a timer.

DXL Reference Manual

957

Example

The following example prints "test".

void cb (DB x) {}

DB db = create("test")

DBE t = timer(db, 1, cb, "test")
realize db

int id = getTimerID(t)

print getTimerName id

getTimerRunning

Declaration

bool getTimerRunning (int id)

Operation

Returns TRUE if id is a timer and it is running.

Example
The following example prints all running timers.
int 1
for 1 in 0 : 999 do
{
string s = getTimerName (1)
if (!'null s)
{

int d = getTimerInterval (1)
bool r = getTimerRunning (i)
print "Timer " 1 "™ is "™ (r ? "" : "not ") "running with interval " d "\n"

DXL Reference Manual

958 ‘

Symbol character mapping

The following perms are used to provide a mapping from a symbol font character to a define unicode character. ReqIF
export uses these perms to convert non-unicode values into a valid unicode character. You can export unusual fonts (map
the characters) using these perms.

It is responsibility of the calling program to create and destroy the skip lists.

Each skip list is a set of pairs where the key is an integer corresponding to a character code (32 to 255) and the value is an
integer corresponding to the unicode value.

getFontList

Declaration

void getFontList (Skip sk)
Operation

The perm gezFontl ist fills a skip list with the name of fonts that have a mapped character.
Example

Skip sk = create

getFontList (sk)

string s

for s in sk do

{

print s “\n”

}

delete sk

getMappedCode

Declaration:
int getMappedCode (string s, char c)

Operation
The perm getMappedCode returns the unicode value of a character in the specified font.

If no character mapping is defined (cither the font is not known or the actual character provided is not mapped), a value of
0 is returned.

Example
int i = getMappedCode(“symbol”, ‘a’)

DXL Reference Manual

959

getMappedCodes

Declaration
void getMappedCodes (string s, Skip sk)

Operation

The perm getMappedCodes fills the provided skip list with any existing mappings for the supplied font. You can then update
this skip list with additional mappings. You must create the skip list before being passed to the function.

Example

This example shows all the mappings for the Wingdings font.
string fontName ="Wingdings”

Skip sk

sk = create

getMappedCodes (fontName, sk)

int i, j

for i in sk do

{

j=(int key sk)

print j “:7 i ;7
}

updateMappedCodes
Declaration

void updadteMappedCodes (string s, Skip sk)

Operation
The perm updateMappedCodes updates or adds mappings for the supplied font.

If the font has previously been mapped, the contents of skip list replace the mappings.

Example

This example adds a new mapping (Wingdings char #36 to unicode char 999) to the Wingdings font.
string fontName ="Wingdings”

Skip sk

sk = create

DXL Reference Manual

960

getMappedCodes (fontName, sk)

put (sk, 36,999)

updateMappedCodes (fontName, sk)

DXL Reference Manual

Chapter 38

Character codes and their meanings

The following table lists the characters for ASCII codes 0-127. For ASCII codes 128 and higher, Rational DOORS uses

Latin-1 encoding. The character sets for Latin-1 differ between platforms.

Table 1: ASCII codes 0-127

Decimal Value Hex Value C(l'jl(z:?;rcﬁr ASCII Symbol Meaning
0 00 Ctrl-@ NUL null
1 01 Ctrl-A SOH start of heading
2 02 Ctrl-B STX start of text
3 03 Ctrl-C ETX end of text
4 04 Ctrl-D EOT end of transmission
5 05 Ctrl-E ENQ enquiry
6 06 Ctrl-F ACK acknowledge
7 07 Ctrl-G BEL bell
8 08 Ctrl-H BS backspace
9 09 Ctrl-1 HT horizontal tab
10 0A Ctrl-J LF new line
11 0B Ctrl-K VT vertical tab
12 oC Ctrl-L FF form feed
13 0D Ctrl-M CR carriage return
14 O0E Ctrl-N SO shift out
15 OF Ctrl-O SI shift in
16 10 Ctrl-P DLE data link escape
17 11 Ctrl-Q DC1 device control 1
18 12 Ctrl-R DC2 device control 2
19 13 Ctrl-S DC3 device control 3

DXL Reference Manual

961

962

Table 1: ASCII codes 0-127

Decimal Value Hex Value C?lg?:ll:t)ir ASCII Symbol Meaning
20 14 Ctrl-T DC4 device control 4
21 15 Ctrl-U NAK negative acknowledge
22 16 Ctrl-V SYN synchronous idle
23 17 Ctrl-W ETB end of transmission block
24 18 Ctrl-X CAN cancel
25 19 Ctrl-Y EM end of medium
26 1A Ctrl-Z SUB substitute
27 1B Ctrl-[ESC escape
28 1C Ctrl-\ FS file separator
29 1D Ctrl-] GS group separator
30 1E Ctrl-» RS record separator
31 IF Ctrl-_ Us unit separator
32 20 SP digit select
33 21 ! exclamation point
34 22 " double quotation mark
35 23 # pound sign, number sign
36 24 $ dollar sign
37 25 % percent sign
38 26 & ampersand
39 27 ! apostrophe
40 28 (left parenthesis
41 29) right parenthesis
42 2A * asterisk
43 2B + addition sign
44 2C s comma

DXL Reference Manual

Table 1: ASCII codes 0-127

Decimal Value Hex Value C?lg?:ll:t)ir ASCII Symbol Meaning
45 2D - subtraction sign
46 2E period
47 2F / right slash
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A colon
59 3B ; semicolon
60 3C < less than
61 3D = equal
62 3E > greater than
63 3F ? question mark
64 40 @ at sign
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E

DXL Reference Manual

963

964

Table 1: ASCII codes 0-127

Decimal Value Hex Value C?lg?:ll:t)ir ASCII Symbol Meaning
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F 0]
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T
85 55 U
86 56 v
87 57 W
88 58 X
89 59 Y
90 5A 4
91 5B [left bracket
92 5C \ left slash, backslash
93 5D] right bracket
94 5E n hat, circumflex, caret

DXL Reference Manual

Table 1: ASCII codes 0-127

Decimal Value Hex Value C?lg?:ll:t)ir ASCII Symbol Meaning
95 SF _ underscore
96 60 grave accent
97 61 a
98 62 b
99 63 c
100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 i
106 6A j
107 6B k
108 6C 1
109 6D m
110 6E n
111 6F 0
112 70 p
113 71 q
114 72 r
115 73 s
116 74 t
117 75 u
118 76 v
119 77 w

DXL Reference Manual

965

Table 1: ASCII codes 0-127

Decimal Value Hex Value C?lg?:ll:t)ir ASCII Symbol Meaning
120 78 X
121 79 y
122 TA zZ
123 7B { left brace
124 7C | logical or, vertical bar
125 7D } right brace
126 7E ~ similar, tilde
127 7F DEL delete

DXL Reference Manual

967

Chapter 39
Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or
features discussed in this document in other countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the uset’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this
document does not grant you any license to these patents. You can send written license inquiries to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquities tegarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in
your country or send written inquiries to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions.
Therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information
herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/ot changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an
endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those
websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to
you.

DXL Reference Manual

968

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information
between independently created programs and other programs (including this one) and (i) the mutual use of the information which
has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation

5 Technology Park Drive

Westford, Massachusetts 01886

US.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other
operating environments may vary significantly. Some measurements may have been made on development-level systems and there is
no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have
been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or
other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility
or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and
objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as
possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com ate trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of

IBM trademarks is available on the web at www.ibm.com/legal/copytrade.html.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.
Linux is a registered trademark of Linus Totvalds in the United States, other countries, or both.
Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

PostScript is either a registered trademark or trademark of Adobe Systems Incorporated in the United States, and/or other
countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product or service names may be trademarks or service marks of others.

DXL Reference Manual

Index

Symbols

i operator 17

:do(AccessRec&, Signaturelnfo, void) 355
:do(AccessRec&, SignaturelnfoSpecifier_, void) 355
:do(SignatureEntry&, Signaturelnfo, void) 359

A

accept(IPC) 191

accept(object) 649

acceptPartition 718

acceptReport 718

Access status 472

accessed(date) 184

AccessRec get(Signaturelnfo, string name, string& error) 356
acknowledge 488

activateURL function 26
active(element) 505

Actual colors 595

addAcceleratorKey 491

addAttribute 712

addAwayAttribute 712
addAwayLinkModule 711
addAwayLinkset 713

addAwayModule 711

addAwayView 713
addBaselines(BaselineSet) 328
addComment(Discussions) 903
addFilter 649

addGroup 247

addGroup (Discussions access controls) 909
addLinkModule 710
addLinkModuleDescriptor 406
addLinkset 713

addMember 249

addMenu 504

addModule 710
addModule(BaselineSetDefinition) 317
addNotifyUser 226
addOrUpdateOSLCDXLService 952
addProjectEntry(ProblemItem) 896
addRecentlyOpenModule(ModuleVersion) 346
addRecentlyOpenModule(string) 347
addToolTip 580

DXL Reference Manual

969

addUser 248
addUser (Discussions access controls) 909
addView 713
all(module) 374
allAttributesReadable(SignatureEntry) 362
allowsAccess 715
alternative 866, 872
Alternative Addins Location 629
alternatives 866
alternativeWord 882
anagram 884
ancestors(show/hide) 656
ancestors(state) 656
annotation(BaselineSet) 326
append 209
Append operator 165
append(open file) 137
appendCell 824
appendColumn(table) 824
appendRow 825
appendSignatureEntry(Signaturelnfo si, string label, string com-
ment) 358
Application of regular expressions 161
apply 559
apply(arrows) 561
apply(partition definition) 717
applyFiltering 657
applyingFiltering 657
applyTextFormattingToParagraph 851
Archive

and restore 916

properties 917
archive(modules and projects) 918
archive(user list) 919
archiveFiles 919
Arithmetic operators (int) 121
Arithmetic operators (real) 124
Arrays 174
ascending 663
Assignment (buffer) 165
Assignment (date) 150
Assignment (enumerated option) 440
Assignment (from attribute) 432
Assignment (int) 122
Assignment (real) 125
Assignment (rich text) 842
Assignment (to attribute) 433
Asynchronous HTTP requests 947
Attachment placement 603

970

attrdef(trigger) 788
attrDXIT.Name 468
Attribute definitions
access controls 452
example program 450
introduction 441
properties 43, 51, 441
Attribute types
access controls 460
manipulation 461
properties 454
values 52, 454
Attribute values
access controls 438
extraction 431
attribute(in column) 690
attribute(trigger) 788
attribute(value) 648
attributeDXI. 552
attributeValue 203, 446
atttName 691
Auto-declare 8
autolndent 304
Automation
interface 773
Automation client 768

B

background 564
backgroundColor(get) 691
backgroundColor(set) 692
backSlasher 131

Backtrace 914

baseline 307

baseline(history session) 339
baseline(ModuleVersion) 313
baselineExists 307
baselineExists(ModuleVersion) 313
baselineIndex(discussions) 906
baselinelnfo(current Module) 313
Baselines,example program 311
baselineSet(ModuleVersion) 329
baseWin 492

batchMode function 26
below(element) 598

beside 598

bitmap 573

block 492

bool pageSignaturePage 816

DXL Reference Manual

Boolean operators 118

box 568

Break statement 22
bringToFront 306
Browsing the DXL library 5
Buffer comparison 166
Buffers and regular expressions 172
busy 492

button 560

button(arrows) 561

Buttons 558

C

Callstack 914
canceled(IntegrityResultsData) 891
cancelled(IntegrityResultsData) 891
canControl(attribute type) 460
canControl(attribute) 438
canControl(item) 268
canControl(module) 291
canControl(object) 372
canControl(view) 678
canControlDef 452
canControlVal 453
canCreate(attribute type) 460
canCreate(attribute) 438
canCreate(item) 268
canCreate(module) 291
canCreate(object) 372
canCreate(view) 678
canCreateAttrDefs 453
canCreateAttrTypes 461
canCreateDef 452
canCreateServerArchive 927
canCreateVal 452

canDelete 384
canDelete(attribute type) 461
canDelete(attribute) 439
canDelete(external link) 416
canDelete(item) 269
canDelete(link) 397
canDelete(module) 292
canDelete(object) 372
canDelete(view) 679
canDeleteDef 453
canDeleteVal 453
canBEveryoneModifyDiscussions 908
canLock(object) 373
canModify(attribute type) 461

canModify(attribute) 439
canModify(item) 268
canModify(module) 292
canModify(object) 372
canModify(view) 678
canModifyDiscussions 908
canOpenFile 137
canRead(attribute type) 461
canRead(attribute) 434
canRead(item) 268
canRead(module) 297
canRead(object) 372
canRead(view) 678
canReadSetrverArchiveFile 928
canRestoreServerArchive 927
canUnlock(object) 373
canUseServerArchive 928
canvas 563
canWrite(attribute) 434
canWrite(module) 297
canWrite(view) 679
canWriteServerArchiveFile 928
Casts 19
cell 821
centered 493
change(view definition) 682
changed(date) 184
changePasswordDialog 227
changePicture 757
Character constants 13
Characters
ASCII codes 961
classes 119
codes and their meanings 961
extracting from a buffer 167
extracting from a string 119
set constants 854
set identification 854
characterSet 856
charOf 120
charsetDefault 855
checkBox 534
checkConnect 253
checkDatabaselntegtity(Folder&, IntegrityResultsData&) 890
checkDN 253
checkDXL function 25
checkFolderIntegrity(Folder, IntegrityResultsData& , bool) 891
checkItem(IntegrityProblem) 897
Checksum validation 929

DXL Reference Manual

choice 542
Choice dialog box elements 542
cistremp 129
clear(oleAutoArgs) 772
clearDefaultViewForModule 671
clearDefaultViewForUser 671
clearInvalidInheritanceOf 676
cleatSearchObject 390
cleatToolTips 581
client 190
Clipboard general functions 392
clipClear 270
clipCopy 269
clipCut 269
clipLastOp 271
clipPaste 270
clipUndo 271
close 559
close(baselineSet) 327
close(configuration area stream) 147
close(Dictionary) 882
close(module) 300
close(pattition file) 717
close(stream) 138
closeDiscussion 904
closeFolder 284
closeProject 288
codepageName 208
color 565
Color schemes 195
color(get) 691
color(set) 691
Colors 592
column 690
Column alignment constants 690
column(value) 648
Columns 690
combine 168
comment (Trigger) 907
Comment variable (Discussions) 901
Comment(Discussion Types) 899
Comments 10
Common element operations 503
compareChecksumFile 931
Complex canvases 576
Compound

filters 658

sort 664

statements 20

971

972

Concatenation (attribute base type) 457
Concatenation (attribute definition) 444
Concatenation (attribute) 432
Concatenation (base types) 115
Concatenation (buffers) 166
Concatenation (dates) 149
Concatenation (history type) 334
Conditional statements 20
confAppend 146
confCopyFile 146
confDeleteDirectory 145
confDeleteFile 146
confDownloadFile 149
confFileExists 147
Configuration file access 143
confirm 489
confirmPasswordDialog 228
confMkdir 144
confRead 145
confRenameFile 146
confUploadFile 148
confWrite 145
Constants

and general functions 863

dictionary 864

icons 486

language 863

of type int 757

spell check modes 864

table 819

trigger 781

type bool 118
Constants (history type) 333
Constants for codepages 207
Constrained placement

basics 601

introduction 601
contains 168, 650
containsOle 749
contents 649
Continue statement 23
Controlling

Electronic Signature ACL 353

Rational DOORS from applications that support automa-

tion 773
Convert to real 125
convertFolderToProject 283
convertFromCodepage 210
convertProjectToFolder 282

DXL Reference Manual

convertToCodepage 210
convertToFolder(ProblemlItem) 896
copy(module) 302
copy(partition definition) 708
copyFile 139

copyPassword 228, 238
copyPictureObject 757
copyToClipboard 192
cos(Real Angle) 127

create 817

create(array) 174
create(attribute definition) 444
create(attribute type) 462
create(Baseline Set) 325
create(baseline) 308
create(BaselineSetDefinition) 315
create(buffer) 169
create(descriptive module) 300, 344
create(dialog box) 493
create(Discussion) 903
create(external link) 416
create(folder) 283
create(formal module) 299
create(link module) 300
create(linkset) 412
create(object) 382
create(oleAutoArgs) 771
create(partition definition) 708
create(Project) 287

create(skip list) 156
create(status handle) 183
create(view definition) 681
createButtonBar 494, 639
createChecksumFile 929
createCombo 494, 644
createDropCallback 795
createEditableCombo 592
createltem 494, 639
createMenu 637
createPasswordDialog 226
createPopup 644

createPrivate 681

createPublic 681
createString(skip list) 156
Creating a user account example program 230
Cutrrent folder, setting 281
Current module, setting 292
Current object 378

Current object, setting 378

Current page setup, setting 814
Current project, setting 284
cutrent(folder) 281
current(module) 293
current(object) 379
current(page setup) 814
current(project) 285
current(trigger) 788
cutrentANSIcodepage 208
currentColumn(get) 698
currentDirectory 139
currentView 667

Customizing Rational DOORS 195
cutRichText 843

D

data(for ModuleVersion) 312
Database Explorer 197
Database Integrity Checker 889
Database Integtity Perms 890
Database Integrity Types 889
Database Properties 212
Database properties 215

date 153

date(DBE date_dbe) 536
dateAndTime 154

dateOf 152
dateOf(BaselineSet) 327
dateOnly 154

Dates 149

Dates, comparison 150

DBE resizing 610

DdcMode constants 732
Declarations 15

Declarators 15
decodeResourceURL 429
decodeURL 422

Default link module 412
defaultTableAttribute 833
delete 817

delete(array) 175
delete(attribute definition) 445
delete(attribute type) 463
delete(Baseline) 314
delete(baseline) 308
delete(BaselineSetDefinition) 318
delete(buffer) 169
delete(column) 692
delete(entry) 157

DXL Reference Manual

delete(group attribute) 244
delete(IntegrityResultsData&) 897
delete(IPC channel) 192
delete(item in tree view) 507
delete(item) 276

delete(link) 410
delete(linkset) 413
delete(lock list) 938
delete(ModuleProperties) 349
delete(oleAutoArgs) 771
delete(option or item) 507
delete(partition definition) 708
delete(regexp) 163
delete(skip list) 157
delete(status handle) 184
delete(trigger) 785
delete(user attribute) 244
delete(user property) 245
delete(view definition) 682
delete(view) 668
deleteAllMembers 249
deleteCell 822
deleteColumn 549, 822
deleteDiscussion 904
deleteFile 140

deleteGroup 248
deleteKeyRegistry 188
deleteMember 249
deleteNotifyUser 226
deletePicture 758

deleteRow 822

deleteTable 822

deleteUser 248
deleteValueRegistry 189
Derived types 15
descendants(show/hide) 667
descendants(state) 668
descending 663

description 272

description(BaselineSetDefinition) 317

Descriptive modules 343
deselect 389

deselect(archive item) 926
destroy(dialog box) 494
destroy(icon) 487
destroyBitmap 574
destroySort 666

Developing DXL programs 3
Diagnostic perms 858

973

974

Dialog boxes
clements 503
example program 605, 606
functions 491
Dictionary
constants 864
vatiable 881
diff(buffer) 339
ditectory 184
disableDisplayWarnings 861
disableGeneralRichTextWarnings 860
disableObjectTextAssignmentWarnings 859
disableObjectTextRichTextWarnings 859
disableRepeatWarnings 860
disconnect 191
Discussion 899
discussion (trigger) 908
Discussion variable (Discussions) 900
Discussions 899
DiscussionStatus 899
display 700
Display Color Schemes 195
displayRich 701, 702
dispose(Discussion/Comment) 908
dispose(partition definition) 708
Document attributes 811
document(module) 374
doorsInfo 226
doorsVersion 288
downgrade 301
downgradeShare 301
Drag-and-drop 547
draggedObjects 798
draw 570
drawAngle 571
drawBitmap 574
dropDataAvailable 796
droppedAttributeOLEText 798
droppedAttributeRichText 797
droppedAttributeText 797
droppedAttrOLETextAvailable 797
droppedAttrRichTextAvailable 797
droppedAttrTextAvailable 796
droppedList 798
droppedString 796
DXL attribute
example program 468
introduction 467

dxl(get) 693

DXL Reference Manual

dxl(set) 693

dxl(trigger) 788

dxIHere() function 916
dxIWarningFilename 861
dxIWarninglineNumber 861
Dynamic triggers 780

E

echoed
inlinks 405
outlinks 405
edit(open module) 302
Electronicsignature Data Manipulation 357
ellipse 570
Embedded OLE objects 739
empty(element) 508
enableDefaultTableAttribute 833
enableDisplayWarnings 861
enableGeneralRichTextWarnings 860
enableObjectTextAssignmentWarnings 858
enableObjectTextRichTextWarnings 859
enableRepeatWarnings 860
end(button bar) 645
end(configuration area stream) 147
end(menu) 645
end(of match) 163
end(popup) 645
end(stream) 140
endPrintJob 575
ensureUserRecordLoaded 234
entire(module) 374
error function 914
errorBox 488
Errors 913
escape 132
event(trigger) 787, 795
events
names 781
types 781
everSectioned 897
Example (Discussions) 910
Example (HTML Control) 616
Example (HTML Edit Control) 622
Example programs
add a signature 362
attribute definitions 450
baselines 311
creating a user account example 230
DXL attribute 468

files and streams 142
filters 657
history 342
list signatures 365
placing dialog boxes 605, 606
progress bar 609
regular expressions 164
RIF 733
setting access control 481
skip lists 159
sorting 666
spelling/dictionary 886
status handle 186
text buffers 172
views 679
excludeCurrent 650
excludel.eaves 650
excludes 662
exists(attribute definition) 446
exists(tree view) 552
existsGroup 233
existsUser 233
exp(Real x) 127
export 574
exportPackage 727
exportPicture 758, 759
exportRTFString 852
exportType 727
Expressions 18
ExternalLink 415
ExternalLink current 416
ExternalLinkBehavior 416
ExternalLinkDirection 415
extractAfter 345
extractBelow 346

F
field 532
File inclusion 11
fileName 531
Files and streams
example program 142
introduction 135
Filter attributes, comparing 648
Filtering on multi-valued attributes 662
Filters
example program 657
introduction 647
filterTables 651

DXL Reference Manual

find 232
find(attribute definition in ModuleProperties) 349
find(attribute definition) 446
find(attribute type) 457
find(entry) 157
findAttribute 712
findByID 233
findGroupRDNFromName 252
Finding

links 397

objects 373
findLinkset 712
findModule 711
findPlainText 131, 676
findRichText 843
findUserInfoFromDN 253
findUSerRDNFfromName 252
findUserRDNFromLoginName 252
findView 712
firstNonSpace 169
flush 138
flushDeletions 385
tnMiniExplorer 200
folder(handle) 282
folder(IntegrityProblem) 893
folder(state) 272
font 566
Font constants 197
fontTable 856
for {string| ModuleVersion} in recentModules 347
for all incoming external links 417
for all outgoing external links 417
for AttrType in ModuleProperties 350
for Comment in Discussion 903
for Discussion in Type 902
for group in ldapGroupsForUser 237
for int in installedCodepages 208
for int in supportedCodepages 208
for Locale in installedLocales 201
for Locale in supportedLocales 202
For loop

for access record in all Baseline Set Definition 321

for access record in all type 479

for access record in Baseline Set Definition 321

for access record in type 478
for access record in values 479
for all incoming links in 398
for all incoming links in all 403
for all items in folder 280

975

976

for all items in project 280

for all link references in 402

for all modules in project 294

for all outgoing links in 397

for all outgoing links in all 403

for all projects in database 286

for all source link references in 404
for all source links in 404

for all source references in 401

for all soutces in 399

for all spellings in alternatives 867
for alternativeWord in Dictionary 883
for archive item in archive 917

for attribute definition in module 449
for attribute type in module 460

for baseline in module 310

for baseline Set in BaselineSetDefinition 324

for baselineSet in ModName_ 329
for baselineSetDefinition in Folder 315

for baselineSetDefinition in ModName_ 315

for buffer in Dictionary 882

for buffer in SpellingAlternatives__ 871
for cell in row 823

for columns in module 699

for data element in skip list 159

for each incoming link in 398

for each source 400

for each source reference 401

for file in configuration area 148

for file in directory 141

for object in document 376

for object in entire 375

for object in module 376

for object in object 377

for object in top 377

for open module in project 294

for out-partition in project 724

for partition attribute in partition module 716
for partition definition in project 724

for partition module in partition definition 715
for partition view in partition module 716
for pictures in project 767

for position in list (selected items) 546

for position in list view (selected items) 555
for ProblemlItem in IntegrityResultsData 891
for project in database 285

for property in user account 243

for rich text in string 838

for row in table 823

for setup name in setups 818

for spellingError in SpellingErrors__ 869
for trigger in database 786

for trigger in module 787

for trigger in project 786

for user in database 235

for user in group 236

for user in notify list 237

for value in list (selected items) 546

for value in list view (selected items) 555

for view in module 675

for group in database 236 for module level attribute definition in {Module | ModuleProp-
for history record in type 337 erties} 450

for history session in module 342 for RifDefinition in Project 732

for in-partition in project 723 for Riflmport in RifDefinition 733

for IntegrityCheckltem in IntegrityResultsData 891 for RifModuleDefinition in RifDefinition 732

for IntegrityProblem in IntegrityResultsData 892 for sort in sort 666

for IntegtityProblem in ProblemItem 892 for string in Fonts__ do 207

for item in folder 279 for string in longDateFormats 154

for language in Languages__ 873 for string in ModuleProperties 349

for link module descriptor in folder 402 for string in shortDateFormats 153

for lock in lock list 939 for View in View 677
for module attributes in module 436 forename 239

for module in BaselineSetDefinition 317 formalStatus 303

for module in database 293 format 141

for Module in Folder do 295 frame 530

for moduleVersion in all BaselineSet 328 full 600

for moduleVersion in BaselineSet 328 fullHostname 181
for object attributes in module 436 fullName 238
for object in all 375 fullName(item) 273

DXL Reference Manual

fullName(ModuleVersion) 314
Function calls 19
Function definitions 16
Functions

backtrace 914

callstack 914

key 158

match 162

put 158
Fundamental functions 115
Fundamental types 15, 115
Future HttpRequest 947

G

General language facilities 135
get 473

Get baseline data 308

Get display state 305

Get page dimension 809

Get page properties status 807
get(archive data) 927
get(BaselineSetDefinition) 319
get(data from array) 175
get(DBE date_dbe) 537
get(element or option) 510
get(group attribute) 245
get(HTML frame) 614
get(HTML view) 613
get(selected text) 516, 557
get(string from array) 176
get(user attribute) 245
get(user property) 245
get(view definition) 681
getAccountsDisabled 216

getAdditional AuthenticationEnabled 265
getAdditional AuthenticationPrompt 266

getAddressAttribute 260
getAdministratorName 229
getAlternative 883
getArchiveType 920
getAttribute 616
getAttributeFilterSettings_ 651
getBorderSize 495
getBoundedAttr 447
getBoundedUnicode 437
getBuffer 615

getBuffer(DBE date_dbe) 537
getBuffer(DBE) 525
getCachedExternalLinkLifeTime 420

DXL Reference Manual

977

getCanvas 702

getCaptionHeight 495
getCatalanOptions 878
getCellAlignment 827
getCellShowChangeBars 827
getCellShowLinkArrows 827
getCellWidth 827

getCheck 550

getColumnBottom 387
getColumnFilterSettings_ 652
getColumnTop 388
getColumnValue 550
getCommandLinePasswordDisabled 266
getComment(SignatureEntry) 361
getComments(Discussion d) 905
getComponentFilter_ 661
getCompoundFilterType_ 661
getCorrectionComplete(SpellingError) 871
getCursorPosition 394
getDatabaseldentifier 216
getDatabaseMailPrefixText 213
getDatabaseMailServer 221
getDatabaseMailServerAccount 222
getDatabaseMinimumPasswordLength 219
getDatabaseName 215
getDatabasePasswordRequired 217
getDate(DBE date_dbe) 537
getDate(SignatureEntry) 360
getDateFormat 201

getDef 473
getDefaultColorScheme 195
getDefaultLineSpacing 206
getDefaultLinkModule 412
getDefaultViewForModule 671
getDefaultViewForUser 671
getDescription 407
getDescriptionAttribute 259
getDisableLoginThreshold 223
getDiscussions 905
getDoorsBindNameDN 255
getDoorsGroupGroupDN 257
getDoorsGroupRoot 256
getDoorsUserGroupDN 257
getDoorsUsernameAttribute 258
getDoorsUserRoot 256
getDOSstring 169
getDXLFileHelp 552
getDXILFileName 552
getEditDXTLControlled 214

978

getEmail(SignatureEntry) 360
getEmail Attribute 259
getEnglishOptions 876

getenv 180
getErrorStartPos(SpellingError) 870
getErrorStopPos(SpellingError) 870
getErrorString 870

getExplanation 874
getFailedLoginThreshold 223
getFontSetting 206

getFontSettings 197

getFormattedLocalDate(SignatureEntry) 361

getFrenchOptions 877
getGermanOptions 877
getGrammatLevel 879
getGrammarRules 874
getGreekOptions 878
getGroupMemberAttribute 261
getGroupNameAttribute 261
getGroupObjectClass 260
getHTML 614

getld 873

getlgnoreReadOnly 881
getlmplied 473

getlnnerHTML 615
getlnvalidCharInModuleName 298
getlnvalidCharInProjectName 286
getlnvalidCharInSuffix 309
getlsValid(SignatureEntry) 362
getLabel(SignatureEntry) 361
getLabelOptions(SignatureEntry) 361
getLabelSpecifier(Signaturelnfo) 358
getlanguage 873, 875
getldapServerName 254
getLegacyLocale 204
getlegacyURL 426

getLineSpacing 205
getLineSpacing(Locale) 206
getLinkFilterSettings_ 652
getlocalDate(SignatureEntry) 361
getlLocksInDatabase 934
getLocksInFolder 935
getLocksInModule 935
getLogicalColorName 597
getLoginFailureText 213
getLoginloggingPolicy 224
getlLoginNameAttribute 258
getLoginPolicy 222
getMaxClientVersion 225

DXL Reference Manual

getMaxPasswordAgeLimit 221
getMaxPasswordGenerationLimit 220
getMemoryUsage 39, 180
getMessageOfTheDay 211
getMessageOfTheDayOption 212
getMinClientVersion 225
getMinPasswordAgelnDays 221
getMinPasswordGeneration 220
getModuleDetails 921
getMostRecentBaseline 309
getMostRecentBaseline(Module) 314
getName 408, 873, 874
getNextError 868
getObjectByRifID 729
getObjectDiscussions 905
getObjectFilterSettings_ 652
getOleWidthHeight 750

getOptions 875

getOverridable 409

getParent 499
getParentFolder(item) 273
getParentProject(item) 273
getPartitionMask 725
getPartitionMaskDef 725
getPartitionMaskVal 725

getPictBB 760

getPictFormat 760

getPictName 760
getPictWidthHeight 761

getPort 190

getPortNo 254

getPos 494

getProjectDetails 922

getProperties 349

getRealColor 597

getRealColorlcon 597
getRealColorName 597
getRealColorOptionForTypes 458
getReconfirmPasswordRequired 217
getReconfirmPasswordTimeout 218
getReference 275

getRegistry 186
getRequireLettersInPassword 218
getRequireNumberInPassword 218
getRequireSymbollnPassword 219
getResourceURL 428
getResourceURLConfigOptions 429
getRifID 729

getRow 826

getRussianOptions 879
getSearchObject 390

getSelectedCol 297

getSelection 389
getSentenceStartPos(SpellingError) 870
getSentenceStopPos(SpellingError) 871
getShowTableAcrossModule 828
getSignaturelnfo(Signaturelnfo si&, ModName_ document, int
major, int minot, string suffix) 357
getSimpleFilterType_ 651

getSize 495

getSortColumn 551

getSource getTarget 413
getSourceName 408
getSourceVersion(Linkset) 406
getSpanishOptions 878
getSpellingCheckingMode 880
getSpellingFirst 880
getSystemLoginConformityRequired 266
getTable 826

getTargetName 408

getTDBindName 264
getTDPortNumber 264
getTDServerName 263
getTDUseDirectoryPasswordPolicy 265
getTelephoneAttribute 259
getTemplateFileName 553

getTimerID 956

getTimerlnterval 956

getTimerName 956

getTimerRunning 957

getTitle 495

getUKOptions 876

getURI 459

getURL 422, 613

getUseLdap() 251

getUserFullName 360
getUsetlistDetails 923
getUserName(SignatureEntry) 360
getUseTelelogicDirectory 263

getVal 473

getWord 883

gluedHelp 496

goodFileName 139

goodStringOf 337

gotoObject 379

Grammar Constants 864

graphics(get) 694

graphics(set) 694

DXL Reference Manual

979

Groups and users
management 240
manipulation 232
properties 241, 262

H

halt function 25
hardDelete(module) 303
hardDelete(object) 385
hasFocus 502
hasHeader 581
hasInPlace 577
hasLinks 653
hasNoLinks 654
hasPermission(Signaturelnfo, Permission) 354
hasPermission(SignatureInfoSpecifier__, Permission) 354
hasPermission(string, Signaturelnfo, Permission) 354
hasPermission(string, SignatureInfoSpecifier_ , Permission)
355
hasPicture/exportPicture 702
hasScrollbars 583
hasSpecificValue 448
headerAddColumn 581
headerChange 581
headerRemoveColumn 582
headerReset 582
headerSelect 582
headerSetHighlight 582
headerShow 583
height 567
help 496
hide 631
hide(dialog box) 496
hide(element) 506
hideExplorer 674
Hierarchy
clipboard 269
information 272
manipulation 276
highlightText 391
History
example program 342
introduction 333
properties 335
home 557
Horizontal navigation 381
hostname 181
HTML Control 611
HTML Edit Control 621

980

HTML functions 940
htmlBuffer 622
htmlEdit 621
htmlText 940
htmlView 611

HTTP Server 942
HttpBody 946
HttpHeader 945
HttpHeaderEntry 946
HttpRequest 942
HttpRequest(error message) 943

HttpRequest(timeout and error message) 943

HttpRequest(timeout) 943
HttpResponse 945
HttpVerb 944

|

id(Locale) 203
identifier(object get) 388
Identifiers 11, 14
ignoreWord 871
Immediate declaration 16
Importing rich text 857
importPicture 762
importRifFile 728
importRTF 857

inactive 506

inClipboard 271
includeCurrent 653
includel.eaves 653
includes 662
includesTime 154
info(get) 694

info(set) 694

infoBox 488
Information about objects 386, 390
inherited 474
inherited(BaselineSetDefinition) 320
inheritedDef 474
inheritedVal 474
In-partition properties 723
In-place editing 576
inPlaceChoiceAdd 578
inPlaceCopy 578
inPlaceCut 578
inplaceEditing 391
inPlaceGet 578
inPlaceMove 577
inPlacePaste 578

DXL Reference Manual

inPlaceReset 579

inPlaceSet 579

inPlaceShow 577
inPlaceTextHeight 579

insert 884

insert(column in module) 694
insert(item in list view) 508
insert(item in tree view) 508
insert(option or item) 508
insertBitmapFromClipboard 762
insertCell 825

insertColumn(list view) 550
insertColumn(table) 825
insertDroppedPicture 799
insertPictureAfter 763
insertPictureBelow 763
insertPictureFile 763
insertPictureFileAfter 764
insertPictureFileBelow 765
insertRow 826

installed(Locale) 203

instance 623

Integer comparison 123

Integer constants 12
IntegrityCheckItem 889
IntegrityltemType 889
IntegrityProblem 889
IntegrityResultsData 889
Interprocess communications 189
intOf(char) 121

intOf(date) 152

intOf(real) 126

Introducing DXL 3

ipcHostname 190
isAccesslnherited 474
isAccessInherited(BaselineSetDefinition) 320
isanyBaselineSetOpen(BaselineSetDefinition) 319
isAscending 665
isAttribute(group attribute) 244
isAttribute(user attribute) 243
isAttribute(user) 243
isAttributeValueInRange 447
isBaseline(ModuleVersion | Module) 312
isBaselinePresent(BaselineSet) 325
isBaselineSignatureConfigured(Signaturelnfo) 357
isBatch function 26
isDatabaseDict 884

isDefault 475

isDefaultURL 428

isDeleted(item) 273
isDeleted(project name) 287
isDescending 665
isDiscussionColumn 906
isEdit 297
isFirstObjectInDXIL.Set(Object) 703
isinheritedView 669
isLastObjectInDXILSet(Object) 703
isLocked 936
isLockedByUser 480, 936
isLLockedClosed 936
isMember 440

isNull 654
isOleObjectSelected 748
isOpen(BaselineSet) 327
isPartitionedOut 725
isPartitionedOutDef 725
isPartitionedOutVal 725
isRanged 457

isRead 297

isRichText 844

isShare 297

isSupported 874

isTimer 956

isUsed 457

isValidChar 210
isValidDescription 298
isValidInt 123

isValidName 287, 298, 669, 817
isValidPrefix 298

isVisible 299
isVisibleAttribute 448

Item access controls 268
item(handle) 279
itemClipboardIsEmpty 271
itemFromID (handle) 279
itemFromReference 275
Iterators (Discussions) 902

J

justify(get alignment) 695
justify(set alignment) 695

K

key function 158

Keyboard event constants 562
keyword(buffer) 170

kind 789

DXL Reference Manual

981

L
label 527
Language 872
and Grammar 872
constants 863
fundamentals 7
language(Locale) 202
Languages__ 872
lastError function 915
Layout
context 700
DXI. 700
layoutDXI 552
LDAP
configuration 252
data configuration 258
server information 254
left 599
leftAligned 599
length 130
length(buffer get) 170
length(buffer set) 170
level modifiers 781
level(module get) 304
level(module set) 304
level(object get) 388
level(trigger) 787, 795
levelModifier 789
levels 781
Lexical conventions 10
Library description file format 627
line 569
Line spacing constant for 1.5 lines 205
link(get) 696
link(set) 696
link(Trigger) 791
linkIndicators(show/hide) 669
linkIndicators(state) 670
Links
access control 396
creation 396
management 406
operators 396
source 410
target 411
linkset 413
list 544
listView 549
load 309, 487, 670

982

load(linkset) 414
load(ModuleVersion) 312
load(pattition definition) 709
loadBitmap 573
loadChecksumFile 930
loadDirectory 234
loadInPartitionDef 709
loadLdapConfig() 250
loadUserRecord 233
locale 203, 204
Locale type 201
Localizing DXL 6
Lock

manager 933

properties 933
lock(BaselineSetDefinition) 318
lock(module) 936
lock(object) 480, 937
Locking 480
log(Real x) 127
Logical colors 593
Loop statements 22
Looping within

projects 289
Loops 9
lower 130

M
main(get) 695
main(set) 696
major(BaselineSet) 325
markUp 344
match function 162
matches 162
maximumAttributeLength 431
mayEditDXL 238
mayModifyDiscussionStatus 905
member 249
Menu

DXL file format 628

index file format 628
menuBar 584
Menus, status bar and tool bars example 585
menuStatus 630
Message boxes 488
messageBox 490
Mini database explorer 200
Minimum and maximum operators 123
minimumSize 32, 502

DXL Reference Manual

minor(BaselineSet) 326
Miscellaneous
object functions 391
spelling 884
mkdir 181
mode 185
modified 557
modified(date) 184
modify(attribute definition) 448
modify(attribute type) 463
module(containing object) 374
module(handle) 293, 311
module(link) 410
module(state) 272
module(Trigger) 790
ModuleProperties 348
Modules
access controls 291
display state 304
information 295
manipulation 299
menus 632
properties 348
recently opened 346
references 292
state 296
status bars 629
moduleVersion(handle) 312
move(item) 278
move(object) 384
multilist 545

Multi-value enumerated attributes 439

N

name(BaselineSetDefinition) 316
name(item) 272

name(Locale) 202
name(ModuleVersion) 313
name(trigger) 789

name(view) 670

Naming conventions 9
Navigation from an object 379
next(filtered) 670

nextMajor 310

nextMinor 310

noElems 509

noError function 915

notNull 654

null 116

null constant 14

Null statement 24
number(history session) 338
number(object get) 388

(0]

object 392
object(absno) 373
object(trigger) 789
Objects
access controls 371
managing 382
status 387
of function 24
ok(arrows) 561
ok(buttons) 558
OLE

information functions 750

objects 739
OLE clipboard 739
oleActivate 739
oleCloseAutoObject 745
oleCopy 741
oleCount 748
oleCreateAutoObject 769
oleCut 742
oleDeactivate 740
oleDelete 743
oleGet 770
oleGetAutoObject 770
oleGetResult 769
olelnsert 743

olelnsert (insert to buffer) 744

olelsObject 744
oleLoadBitmap 765
oleMethod 773
olePaste 746
olePasteLink 747
olePasteSpecial 746
olePut 771
oleResetSize 754
oleRTF 745
oleSaveBitmap 748
oleSetHeightandWidth 754
oleSetMaxWidth 753
oleSetMinWidth 753
oleSetResult 769
open(Dictionary) 881
open(partition file) 717

DXL Reference Manual

openPictFile 766
openProject 288
Operating system
commands 179
interface 179
Operations on
all types 115
type bool 117
type char 118
type int 121
type real 124
type string 128
Operator functions 17
Operators 471

minimum and maximum 123
template expressions 624

unary 122
opposite 599
Options Constants 863
optionsExist 196
OSLC DXL Services 951
OSLC Link Discovery 420

OSLCDXILService properties 951

Out-partition properties 722

Overloaded functions and operators 19

P

pageBreaklevel(get) 811
pageBreakLevel(set) 811
pageColumns(get) 815
pageColumns(set) 815
pageExpandHF 813
pageFormat(get) 815
pageFormat(set) 815
pageHeaderFooter(get) 812
pageHeaderFooter(set) 812
pageLayout 817
pageName 817
Pages

dimensions 808

setup information 814

setup management 817
pageTitlePage 816
pageTOCLevel(get) 811
pageTOCLevel(set) 811

parentRef(IntegrityProblem | Problemltem) 895
parentRefID(IntegrityProblem | Problemltem) 895

Parse time errors 913, 942
Parsing 8

983

partition 472
Partitions
access 724
attribute properties 721
definition contents 710
definition management 707
definition properties 721
file properties 722
information 719
management 716
module properties 721
properties 720
view properties 721
pasteToEditbox 845
path(item) 273
Persistent triggers 780
Picture object support 757
pictureCompatible 768
pictureCopy 766
platform 179
polatLine 572
polygon 572
pow(Real x) 128
Pragmas 12
preloadedView 669
previous(filtered) 670
print 575
print(attribute base type) 458
print(base types) 116
print(date) 151
print(history type) 337
printCharArray 177
printModule 301
priority 791
ProblemItem 889
problems(IntegrityResultsData, string) 893
Progress bar
example program 609
introduction 607
progressCancelled 609
progressMessage 608
progressRange 608
progressStart 607
progressStep 608
progressStop 609
project(handle) 285
project(state) 272
Properties 471
Properties (Discussions) 899

DXL Reference Manual

purge(item) 277
purgeObject_ 386
purgeObjects_ 386
put function 158
put(data in array) 177
put(oleAutoArgs) 772
putString 177

Q
qualifiedUniquelD 275
query 490

R

radioBox 535
raise 497
random(int) 124
random(real) 128
Range 20
Rational Directory Server 262
Rational DOORS
built-in windows 630
customizing 195
database access 215
Rational DOORS URLs 422
Read
and write operators 167
from stream 136, 143
line from stream 136, 144
read 209
read(BaselineSetDefinition) 319
read(open file) 137
read(open module) 302
readFile 138, 209
ready 497
Real colors 595
realBackground 564
realColor 565
realize(pending) 497
realize(show) 498
realOf 126
recentModules 346
rectangle 568
recv 191
Reference operations 18
refresh 306
refreshDBExplorer 199
refreshExplorer 198
regexp 163

regexp2 164
region(Locale) 203
registeredFormat 796
regular 184
Regular expressions

example program 164

introduction 160
reimportPicture 767
reject 655
rejoinPartition 719
rejoinReport 719
release 498
remove 884
remove(lock) 938
removeAttribute 714
removeGroup (Discussions access controls) 909
removelLinkModuleDescriptor 407
removeLinkset 714
removeModule 713
removeModule(BaseLineSetDefinition) 318
removeOSLCDXLService(OSLCDXLService service) 953
removeOSLCDXIService(string key) 953
removePartition 719
removeRecentlyOpenModule(ModuleVersion) 347
removeUnlistedRichText 838
removeUser (Discussions access controls) 909
removeView 714
rename(archive item) 927
rename(BaselineSetDefinition) 316
rename(item) 278
rename(partition definition) 709
renameFile 140
reopenDiscussion 904
repaired(IntegrityProblem) 896
repaired(ProblemItem) 896
replaceRichText 844
Reporting access control example 482
requestLock 940
resetColor 196
resetColors 196
restore(archive) 923
restoreFiles 925
restoreModule 924
restoreProject 925
restoreUsetlist 926
Return statement 23
returnPartition 718
Rich text

constructors 836

DXL Reference Manual

985

processing 835

strings 842

tags 835
richClip 845
richField 532
RichText type properties 840
richtext_identifier(Object) 845
richText(box) 556
richText(column) 837
richText(of attribute) 848
richText(of string) 849
richTextFragment 852
richTextNoOle 851
richTextNoOle(column) 837
RichTextParagraph type properties 839
richTextWithOle 850
richTextWithOle(column) 837
richTextWithOleNoCache 851
richTextWithOleNoCache(column) 837
RIF example programs 733
RifDefinition 730
RifImport 728
rifMerge 730
RifModuleDefinition 731
right 599
row 821
rtfSubString 848
runFile 774
runStr 775
Run-time errors 914

S

save(BaselineSetDefinition) 319
save(module) 302

save(page setup) 818

save(partition definition) 709
save(Signaturelnfo si, int &code) 359
save(SpellingOptions) 875

save(view definition) 682

save(view) 672
saveClipboardBitmapToFile 762
saveDirectory 235
saveDiscussionAccessList 910
saveDroppedPicture 799
saveLdapConfig() 250
saveModified(partition definition) 710
saveUserRecord 234

Scope 14

scroll 699

986

Scrolling functions 699
scrollSet 584

search 172

sectionNeedsSaved 385
select(archive item) 926
select(element) 509
selected(element) 509
selected(item) 510
selectedElems 546

Semicolon and end-of-line 10
send 191
sendBroadcastMessage 953
sendEMailNotification 229, 230
separator(dialog box) 528
separator(menu) 644

server 190

serverMonitorIsOn 182
session 152

set 475

Set display state 306

Set page dimension 809

Set page properties status 808
set(BaselineSetDefinition) 320
set(char in buffer) 171
set(choice element values) 518
set(DBE date_dbe) 537
set(file selector) 519

set(filter) 656

set(html callback) 612
set(HTML edit) 622

set(htm]l URL) 613

set(HTML view) 614

set(icon) 519

set(item value) 518

set(key or mouse callback) 520
set(list view callback) 523
set(select and activate) 522
set(select, deselect, and activate) 524
set(select) 520

set(selected status) 518
set(Signaturelnfo, Permission, string name) 355
set(SignaturelnfoSpecifier__, Permission, string name) 355
set(sort function) 524

set(sort) 664

set(status bar message) 519
set(tree view expand) 525
set(trigger status) 792

set(user property) 246
set(value or selection) 516

DXL Reference Manual

setAccess 715

setAccountsDisabled 216
setAddressAttribute 260
setAllCellsAlignment 828
setAllCellsBorder 828
setAllCellsShowChangeBars 828
setAllCellsShowLinkArrows 829
setAllCellsWidth 829
setAnnotation(BaselineSet) 327
setAttrFromHTML 941

setAttribute 616
setCachedExternallLinkLife Time 420
setCatalanOptions 879
setCellAlignment 829

setCellBorder 829
setCellShowChangeBars 830
setCellShowLinkArrows 830
setCellWidth 830

setCenteredSize 500

setCheck 551

setColumnAlignment 830
setColumnShowChangeBars 831
setColumnShowLinkArrows 831
setColumnWidth 831
setCommandLinePasswordDisabled 266
setDatabaseMailPrefixText 213
setDatabaseMailServer 221
setDatabaseMailServerAccount 222
setDatabaseMinimumPasswordLength 220
setDatabaseName 215
setDatabasePasswordRequired 217
setDef 475

setDefaultColorScheme 196
setDefaultLinkModule 412
setDefaultViewForModule 672
setDefaultViewForUser 672
setDescription 459
setDescription(BaselineSetDefinition) 316
setDescription(partition definition) 710
setDescriptionAttribute 259
setDisableLoginThreshold 223
setDiscussionColumn 906
setDoorsBindNameDN 255
setDoorsBindPassword 255
setDoorsBindPasswordDB 255
setDoorsGroupGroupDN 257
setDoorsGroupRoot 256
setDoorsUserGroupDN 257
setDoorsUsernameAttribute 258

setDoorsUserRoot 256
setDropList 799

setDropString 798
setDxIServiceResult 952
setDXLWindowAsParent 502
setEditDXI.Controlled 213
setEmail Attribute 259

setempty 171

setEnglishOptions 876

setenv 181
setExtraHeightShare(DBE) 610
setExtraWidthShare(DBE) 610
setFailedLoginThreshold 223
setFocus 497, 525
setFontSettings 198, 207
setFrenchOptions 877
setFromBuffer(DBE date_dbe) 537
setFromBuffer(DBE, Buffer) 526
setGermanOptions 877
setGotFocus 506
setGrammarl.evel 880
setGreekOptions 878

setGroup 247
setGroupMemberAttribute 261
setGroupNameAttribute 261
setGroupObjectClass 261
setHTML 614
setlgnoreReadOnly 881
setImplied 476

setlnnerHTML 615
setlLabelSpecifier(Signaturelnfo si, string newLabel) 358
setLanguage 875
setLdapServerName(string) 254
setLegacylocale 204
setLimits(DBE date_dbe) 536
setLineSpacing 205
setLineSpacing(Locale) 206
setLinkModuleDescriptorsExclusive 407
setLoginFailureText 212
setLoginLoggingPolicy 224
setLoginNameAttribute 258
setLoginPolicy 222

setLostFocus 506

setlower 171
setMaxClientVersion 225
setMaxValue 466
setMessageOfTheDay 211
setMessageOfTheDayOption 211
setMinClientVersion 224

DXL Reference Manual

setMinPassword AgeInDays 221
setMinPasswordGeneration 220
setMinValue 467

setOverridable 409

setParent 499
setParent(ProblemItem, Folder) 895
setPortNo 254

setPos 500

setPreloadedView 668

setRealColor 598
setRealColorOptionForTypes 458
setReconfirmPasswordRequired 217
setReconfirmPasswordTimeout 218
setRefreshDelta 704

setRegistry 187
setRequireLettersInPassword 218
setRequireNumberInPassword 219
setRequireSymbollnPassword 219
setRichClip 192, 846
setRichClip(buffer/RTF_string) 846
setRowWidth 831
setRussianOptions 879
setSearchObject 390

setSelection 389

setServerMonitor 182
setShowDeletedItems(bool) 274
setShowDescriptiveModules 199
setShowFormalModules 199
setShowLinkModules 199
setShowTableAcrossModule 832
setSize 500

setSortColumn 551

setSource 414

setSpanishOptions 878
setSpellingCheckingMode 880
setSpellingFirst 880

setTarget 414

setTDBindName 264
setTDBindPassword 264, 265
setTDPortNumber 49, 264
setTDServerName 263
setTDUseDirectoryPasswordPolicy 265
setTelephoneAttribute 260
setTextChangeCB 512

Setting access control, example program 481
setTitle 501

setUKOptions 876
setUpExtraction 345

setupper 171

987

988

setURI 459
setURL 613
setUseLdap() 251
setUser 247
setUseTelelogicDirectory 263
setVal 475
share(open module) 302
shareLock 938
show(dialog box) 498
show(element) 507
show(window) 631
showChangeBars(get) 673
showChangeBars(show/hide) 673
showDeletedModules 306
showDeletedObjects(get) 672
showDeletedObjects(show/hide) 673
showDescriptiveModules(get) 199
showExplorer 674
showFormalModules(get) 199
showGraphicsDatatips(get) 673
showGraphicsDatatips(show/hide) 673
showGraphicsLinks(get) 674
showGraphicsLinks(show/hide) 674
showing 499
showinglEixplorer 674
showLinkModules(get) 199
showOlePropertiesDialog 749
showPrintDialogs(get) 674
showPrintDialogs(set) 675
sidel(module) 414
side2(module) 414
Signature types 353
SignaturelnfoSpecifier_ specifier(Signaturelnfo) 353
Simple
elements for dialog boxes 527
placement 598
sin(Real Angle) 127
Single line spacing constant 205
size 185
sizeof function 24
Skip lists
example program 159
introduction 156
slider 533
softDelete(module) 303
softDelete(object) 385
sort function 26
sortDiscussions 904
Sorting

DXL Reference Manual

example program 666
modules 663
sorting 665
soundex 130
source 417
sourceAbsNo 411
sourceVersion 405
Specific
object 379
windows 631
specific 476
specific(BaselineSetDefinition) 320
specificDef 476
specificVal 476
spell 865, 867
Spell check mode constants 864
spellFix 866
Spelling dictionary 881
Spelling/Dictionary Example programs 886
SpellingEtrors_ 869
spGetLanguages 872
splitHeadingAndText 393
splitter 528
sqrt(Real x) 128
stacked 600
Standard
combo box controls 637
items 632
menus and submenus 632
streams 135
start(of match) 163
startConfiguringMenus 501
startPrintjob 575
startTimer 955, 959
Statements
break 22
compound 20
conditional 20
continue 23
loop 22
null 24
return 23
status 629
Status handle programs example 186
statusBar 584
stopConfiguringMenus 501
stopTimer 955
stored 792, 793
string

ansi(utf8String) 262
utf8(ansiString) 262
string exportAttributeToFile 850
stringOf 153
stringOf(attribute base type) 458
stringOf(buffer) 171
stringOf(filter) 656
stringOf(history type) 337
stringOf(rich text) 850
stringOf(sort) 665
stringOf(trigger) 787
stringOf(user class) 250
Strings 14
stripPath 133
struct
signaturcEntry {} 353
signaturelnfo {} 353
Substring extraction from buffer 167
suffix 310
suffix(BaselineSet) 326
supportedPictureFormat 767
surname 240
symbolic 184
symbolToUnicode 954
synchExplorer 198
synergyUsername 239
Syntax 8
system 182

T

tab 543
Table
constants 819
management 820
manipulation 824
table 821
table(create) 820
tableContents(get) 821
tableContents(set) 822
tan(Real Angle) 127
targetAbsNo 411
targetVersion 405
tempFileName 139
Template
expressions 624
functions 623
template 623
templates 553
Text

DXL Reference Manual

buffers 165
buffers example program 172
editor elements 555
text(box) 556
text(column) 697
text(IntegrityCheckltem) 895
Timer 955
timer 955
timestamp (IntegrityCheckItem) 893
title(get) 697
title(set) 697
today 151
toggle 535
toolBar 587
toolBarComboAdd 590
toolBarComboCount 590
toolBarComboCutCopySelectedText 592
toolBarComboDelete 591
toolBarComboEmpty 590
toolBarComboGetEditBoxSelection 592
toolBarComboGetltem 589
toolBarComboGetSelection 589
toolBarCombolnsert 590
toolBarComboPasteText 592
toolBarComboSelect 589
toolBarEditGetString 513
toolBarMove 591
Toolbars 587
toolBarShow 591
toolBarVisible 591
top(module) 374
topMost 502
toTable 832
treeView 551
trigger status 792
trigger(dynamic) 784
trigger(persistent) 783
Triggers
constants 781
definition 782
dynamic 780
events 778, 780
introduction 777
level assembly 782
manipulation 785, 795
overview 793
persistent 780
priority 780
scope 779

989

990

Type bool

comparison 118

constants 118

operations on 117
Type char

comparison 119

operations on 118
Type int, operations on 121
Type real

comparison 125

operations on 124

pi 124
Type real constants 13
Type string

comparison 128

operations on 128

substring extraction 129
type(attribute) 435
type(IntegrityCheckltem) 893
type(IntegrityProblem) 894
type(item) 274
type(Problemltem) 894
type(trigger) 787, 795
Types 15

U

unApplyFiltering 657

Unary operators 122
undelete(item) 277
undelete(object) 386
undeleteCell 822
undeleteColumn 822
undeleteRow 822

undeleteTable 822

undoMarkUp 345

unicodeString 132, 437
uniquelD 274
uniquelD(IntegrityCheckItem) 892
uniquelD(IntegrityProblem) 892
uniquelD(ProblemItem) 892
unixerror function 915
unload(linkset) 415
unload(module) 415

Unlock object functions 481, 939
unlock(BaselineSetDefinition) 318
unlock(module) 937

unset 477
unset(BaselineSetDefinition) 321

unset(Signaturelnfo, string name) 356

DXL Reference Manual

unset(SignaturelnfoSpecifier__, string name) 356

unsetAll 477
unsetAll(BaselineSetDefinition) 321
unsetAll(Signaturelnfo) 356
unsetAll(SignaturelnfoSpecifer_) 356
unsetDef 477

unsetVal 477

updateGroupList() 251
updateToolBars 589, 630
updateUserList() 251

upper 130

useAncestors(get and set) 682
useAutoIndentation 689
useColumns(get and set) 684
useCompression(get and set) 686
useCutrrent(get and set) 683
useDefaultTableAttribute 833
useDescendants(get and set) 683
useFiltering(get and set) 687
uscFilterTables(get and set) 684
useGraphics(get and set) 685
useGraphicsColumn(get and set) 684
useLevel(get and set) 686
useOutlining(get and set) 685

user 185

User class constants 240
user(BaselineSet) 326

userLocale 202

username 182, 478
useRTFColour 526
useSelection(get and set) 683
useShowDeleted(get and set) 687
useShowExplorer(get and set) 685

useShowLinkIndicators(get and set) 688

useShowLinks(get and set) 688
useShowPictures(get and set) 687
useShowTables(get and set) 688
useSorting(get and set) 686
useTooltipColumn(get and set) 689
useWindows(get and set) 689

\"

validate DOORSURL 427
value 793

value(Trigger) 791
Variables 14

version 296
version(Trigger) 791
Versioned links 403

versionID(BaselineSet) 326
versionString(ModuleVersion) 314
Vertical navigation 380
view 668
Views
access controls 678
definitions 680
clements 547
example program 679

w

warn function 916
warningBox 489
when(history session) 338
who(history session) 338, 341
width 567

width(get) 698

width(set) 698

wildcard 885

window 630

Windows registry 186
write 209

Write to stream 137, 144
write(open file) 137

DXL Reference Manual

991

992

DXL Reference Manual

	Table of Contents
	About this manual
	Typographical conventions
	Related documentation

	Introduction
	Developing DXL programs
	Browsing the DXL library
	Localizing DXL
	LS_

	Language fundamentals
	Auto-declare
	Syntax
	Parsing
	Naming conventions
	Loops

	Lexical conventions
	Semicolon and end-of-line
	Comments
	Identifiers
	File inclusion
	Pragmas

	Constants
	Integer constants
	Character constants
	Type real constants
	The null constant
	Strings

	Identifiers
	Variables
	Scope

	Types
	Fundamental types
	Derived types

	Declarations
	Declarators
	Immediate declaration
	Function definitions
	Operator functions

	Expressions
	Reference operations
	Overloaded functions and operators
	Function calls
	Casts
	Range

	Statements
	Compound statements
	Conditional statements
	Loop statements
	Break statement
	Continue statement
	Return statement
	Null statement

	Basic functions
	of
	sizeof
	halt
	checkDXL
	sort
	activateURL
	batchMode, isBatch

	New in DXL for Rational DOORS 9.7.0
	Symbol character mapping
	getFontList
	getMappedCode
	getMappedCodes
	updateMappedCodes

	New in DXL for Rational DOORS 9.6.1
	Object Management functions
	purgeObject_

	Module Properties
	delete(ModuleProperties)

	Dialog box functions
	helpOn
	minimumSize
	listView

	Display control functions
	Compound filters
	Columns: backgroundColor(get)
	Columns: backgroundColor(set)
	Layout DXL: setRefreshDelta

	OLE objects
	oleInsert (insert to buffer)

	General functions
	Checksum validation
	createChecksumFile
	loadChecksumFile
	compareChecksumFile
	HTML help: helpOnEx
	Asynchronous HTTP requests
	Future HttpRequest

	OSLC DXL Services
	OSLCDXLService properties
	setDxlServiceResult
	addOrUpdateOSLCDXLService
	removeOSLCDXLService(string key)
	removeOSLCDXLService(OSLCDXLService service)

	Timer
	timer
	stopTimer
	startTimer
	isTimer
	getTimerName
	getTimerInterval
	getTimerID
	getTimerRunning

	Triggers

	New in DXL for Rational DOORS 9.6
	Operating system interface
	getMemoryUsage

	Mini database explorer
	Modules
	downgrade
	downgradeShare

	History
	Constants (history type)

	Dialog box functions: common element operations
	setTextChangeCB
	toolBarEditGetString

	Display control: columns
	link(get)
	link(set)
	changebar(get)
	changebar(set)
	currentColumn(get)

	Display control: Layout DXL
	setRefreshDelta

	HTTP Server

	New in DXL for Rational DOORS 9.5
	Embedded OLE objects and the OLE clipboard
	oleInsert

	OSLC Link Discovery
	getCachedExternalLinkLifeTime
	setCachedExternalLinkLifeTime

	Database properties
	getReconfirmPasswordRequired
	setReconfirmPasswordRequired
	getReconfirmPasswordTimeout
	setReconfirmPasswordTimeout
	getRequireLettersInPassword
	setRequireLettersInPassword
	getRequireNumberInPassword
	setRequireNumberInPassword
	getRequireSymbolInPassword
	setRequireSymbolInPassword
	getMinPasswordGeneration
	setMinPasswordGeneration
	getMaxPasswordGenerationLimit
	getMinPasswordAgeInDays
	setMinPasswordAgeInDays
	getMaxPasswordAgeLimit

	Rational Directory Server
	getTDPortNo
	setTDPortNo

	New in DXL for Rational DOORS 9.4
	Attribute definitions
	Attribute definition properties
	create(attribute definition)
	modify(attribute definition)

	Attribute types
	setURI
	getURI

	Rich text strings
	applyTextFormattingToParagraph

	New in DXL for Rational DOORS 9.3
	Converting a symbol character to Unicode
	symbolToUnicode

	Dialog box functions
	addAcceleratorKey

	Operations on type string
	unicodeString
	escape
	stripPath

	Embedded OLE objects and the OLE clipboard
	olePasteSpecial

	OLE information functions
	oleSetHeightandWidth

	Discussions
	isDiscussionColumn
	setDiscussionColumn
	canModifyDiscussions
	canEveryoneModifyDiscussions
	addUser
	addGroup
	removeUser
	removeGroup
	saveDiscussionAccessList

	RIF ID
	getRifID
	getObjectByRifID

	Rational DOORS URLs
	getResourceURL
	getResourceURLConfigOptions
	decodeResourceURL

	Filters
	getSimpleFilterType_
	getAttributeFilterSettings_
	getLinkFilterSettings_
	getObjectFilterSettings_
	getColumnFilterSettings_

	Compound Filters
	getCompoundFilterType_
	getComponentFilter_

	Localizing DXL
	LS_

	Finding links
	for each incoming link
	for each source
	for each source reference

	Links
	getlegacyURL

	New in DXL for Rational DOORS 9.2
	Additional authentication
	getAdditionalAuthenticationEnabled
	getAdditionalAuthenticationPrompt
	getSystemLoginConformityRequired
	getCommandLinePasswordDisabled
	setCommandLinePasswordDisabled

	Dialog box updates
	toolBarComboGetEditBoxSelection
	toolBarComboCutCopySelectedText
	toolBarComboPasteText
	hasFocus
	setDXLWindowAsParent

	New constants
	mayUseCommandLinePassword
	additionalAuthenticationRequired
	iconAuthenticatingUser

	Partitions updates
	addAwayModule
	addAwayLinkModule

	Requirements Interchange Format (RIF)
	exportType
	exportPackage
	importRifFile
	rifMerge
	RifDefinition
	RifModuleDefinition
	DdcMode constants
	RifImport
	for RifDefinition in Project
	for RifModuleDefinition in RifDefinition
	for RifImport in RifDefinition
	Examples

	New in DXL for Rational DOORS 9.1
	Regular Expressions
	regexp2

	New in DXL for Rational DOORS 9.0
	Discussions
	Discussion Types
	Discussion
	Comment
	DiscussionStatus

	Properties
	Discussion
	Comment

	Iterators
	for Discussion in Type
	for Comment in Discussion

	Operations
	create(Discussion)
	addComment
	closeDiscussion
	reopenDiscussion
	deleteDiscussion
	sortDiscussions
	getDiscussions
	getObjectDiscussions
	getComments
	mayModifyDiscussionStatus
	baselineIndex

	Triggers
	comment
	discussion
	dispose(Discussion/Comment)

	Example
	Descriptions
	View Descriptions
	setViewDescription
	getViewDescription

	Attribute Type Descriptions
	setDescription
	modify
	create
	description property

	Attribute Definition Descriptions
	description property
	description(create)
	description(modify)

	Filtering
	applyFiltering
	unApplyFiltering
	applyingFiltering

	HTML
	HTML Control
	htmlView
	set(html callback)
	set(html URL)
	setURL
	getURL
	get(HTML view)
	get(HTML frame)
	set(HTML view)
	setHTML
	getHTML
	getBuffer
	getInnerText
	setInnerText
	getInnerHTML
	setInnerHTML
	getAttribute
	setAttribute
	Example

	HTML Edit Control
	htmlEdit
	htmlBuffer
	set(HTML edit)
	Example

	Miscellaneous
	delete(regexp)
	getURL
	backSlasher

	Fundamental types and functions
	Operations on all types
	Concatenation (base types)
	print (base types)
	null

	Operations on type bool
	Type bool constants
	Boolean operators
	Type bool comparison

	Operations on type char
	Character comparison
	Character extraction from string
	Character classes
	charOf
	intOf (char)

	Operations on type int
	Arithmetic operators (int)
	Assignment (int)
	Unary operators
	Minimum and maximum operators
	Integer comparison
	isValidInt
	random(int)

	Operations on type real
	Type real pi
	Arithmetic operators (real)
	Assignment (real)
	Convert to real
	Type real comparison
	intOf (real)
	realOf
	cos
	sin
	tan
	exp
	log
	pow
	sqrt
	random(real)

	Operations on type string
	String comparison
	Substring extraction from string
	cistrcmp
	length
	lower, upper
	soundex
	backSlasher
	findPlainText
	unicodeString
	escape
	stripPath

	General language facilities
	Files and streams
	Standard streams
	Read from stream
	Read line from stream
	Write to stream
	canOpenFile
	read, write, append(open file)
	close(stream)
	flush
	readFile
	goodFileName
	tempFileName
	currentDirectory
	copyFile
	deleteFile
	renameFile
	end(stream)
	format
	for file in directory
	Files and streams example program

	Configuration file access
	Read from stream
	Read line from stream
	Write to stream
	confMkdir
	confDeleteDirectory
	confRead
	confWrite
	confAppend
	confRenameFile
	confCopyFile
	confDeleteFile
	confFileExists
	close(configuration area stream)
	end(configuration area stream)
	for file in configuration area
	confUploadFile(source, dest [, conftype])
	confDownloadFile(source, dest [, conftype])

	Dates
	Concatenation (dates)
	Assignment (date)
	Date comparison
	print(date)
	today
	session
	intOf(date)
	dateOf
	stringOf
	date
	for string in shortDateFormats
	for string in longDateFormats
	includesTime
	dateOnly
	dateAndTime

	Skip lists
	create, createString(skip list)
	delete(skip list)
	delete(entry)
	find(entry)
	key
	put
	for data element in skip list
	Skip lists example program

	Regular expressions
	Application of regular expressions
	match
	matches
	regexp
	start, end(of match)
	delete(regexp)
	regexp2
	Regular expressions example program

	Text buffers
	Assignment (buffer)
	Append operator
	Concatenation (buffers)
	Buffer comparison
	Read and write operators
	Character extraction from buffer
	Substring extraction from buffer
	combine
	contains
	getDOSstring
	create(buffer)
	delete(buffer)
	firstNonSpace
	keyword(buffer)
	length(buffer get)
	length(buffer set)
	set(char in buffer)
	setempty
	setupper, setlower
	stringOf(buffer)
	Buffers and regular expressions
	search
	Text buffers example program

	Arrays
	create(array)
	delete(array)
	get(data from array)
	get(string from array)
	put(data in array)
	putString
	printCharArray

	Operating system interface
	Operating system commands
	platform
	getMemoryUsage
	getenv
	hostname
	fullHostname
	mkdir
	setenv
	setServerMonitor
	serverMonitorIsOn
	username
	system
	create(status handle)
	delete(status handle)
	accessed, modified, changed(date)
	directory, symbolic, regular
	user, size, mode
	Status handle functions example

	Windows registry
	getRegistry
	setRegistry
	deleteKeyRegistry
	deleteValueRegistry

	Interprocess communications
	ipcHostname
	server
	getPort
	client
	accept
	send
	recv
	disconnect
	delete(IPC channel)

	System clipboard functions
	copyToClipboard
	setRichClip

	Customizing Rational DOORS
	Color schemes
	Display Color Schemes
	getDefaultColorScheme
	setDefaultColorScheme
	optionsExist
	resetColors
	resetColor

	Database Explorer options
	Font constants
	getFontSettings
	setFontSettings
	refreshExplorer
	synchExplorer
	refreshDBExplorer
	setShowFormalModules, setShowDescriptiveModules, setShowLinkModules
	showFormalModules, showDescriptiveModules, showLinkModules(get)
	getSelectedItem

	Mini database explorer
	fnMiniExplorer

	Locales
	getDateFormat
	Locale type
	for Locale in installedLocales
	for Locale in supportedLocales
	userLocale
	name
	language
	region
	id
	locale
	installed
	attributeValue
	locale
	getLegacyLocale
	setLegacyLocale
	Single line spacing constant
	Line spacing constant for 1.5 lines
	setLineSpacing
	getLineSpacing
	setLineSpacing
	getLineSpacing
	getDefaultLineSpacing
	getFontSettings
	setFontSettings
	for string in availableFonts do

	Codepages
	Constants
	for int in installedCodepages
	for int in supportedCodepages
	currentANSIcodepage
	codepageName
	read
	write
	append
	readFile
	isValidChar
	convertToCodepage
	convertFromCodepage

	Message of the day
	setMessageOfTheDay
	setMessageOfTheDayOption
	getMessageOfTheDay
	getMessageOfTheDayOption

	Database Properties
	setLoginFailureText
	getLoginFailureText
	setDatabaseMailPrefixText
	getDatabaseMailPrefixText
	setEditDXLControlled
	getEditDXLControlled

	Rational DOORS database access
	Database properties
	getDatabaseName
	setDatabaseName
	getAccountsDisabled
	setAccountsDisabled
	getDatabaseIdentifier
	getDatabasePasswordRequired
	setDatabasePasswordRequired
	getReconfirmPasswordRequired
	setReconfirmPasswordRequired
	getReconfirmPasswordTimeout
	setReconfirmPasswordTimeout
	getRequireLettersInPassword
	setRequireLettersInPassword
	getRequireNumberInPassword
	setRequireNumberInPassword
	getRequireSymbolInPassword
	setRequireSymbolInPassword
	getDatabaseMinimumPasswordLength
	setDatabaseMinimumPasswordLength
	getMinPasswordGeneration
	setMinPasswordGeneration
	getMaxPasswordGenerationLimit
	getMinPasswordAgeInDays
	setMinPasswordAgeInDays
	getMaxPasswordAgeLimit
	getDatabaseMailServer
	setDatabaseMailServer
	getDatabaseMailServerAccount
	setDatabaseMailServerAccount
	getLoginPolicy
	setLoginPolicy
	getDisableLoginThreshold
	setDisableLoginThreshold
	getFailedLoginThreshold
	setFailedLoginThreshold
	getLoginLoggingPolicy
	setLoginLoggingPolicy
	setMinClientVersion
	getMinClientVersion
	setMaxClientVersion
	getMaxClientVersion
	doorsInfo
	addNotifyUser
	deleteNotifyUser
	createPasswordDialog
	changePasswordDialog
	confirmPasswordDialog
	copyPassword
	getAdministratorName
	sendEMailNotification
	sendEMailMessage
	Creating a user account example

	Group and user manipulation
	find
	findByID
	existsGroup, existsUser
	loadUserRecord
	ensureUserRecordLoaded
	saveUserRecord
	loadDirectory
	saveDirectory
	for user in database
	for group in database
	for user in group
	for group in ldapGroupsForUser
	for user in notify list
	copyPassword
	fullName
	mayEditDXL
	synergyUsername
	forename
	surname

	Group and user management
	User class constants
	Group and user properties
	for property in user account
	isAttribute(user)
	isAttribute(user attribute)
	isAttribute(group attribute)
	delete(user attribute)
	delete(group attribute)
	delete(user property)
	get(user property)
	get(user attribute)
	get(group attribute)
	set(user property)
	set(user attribute)
	set(group attribute)
	setGroup
	setUser
	addGroup
	deleteGroup
	addUser
	deleteUser
	addMember
	deleteMember
	deleteAllMembers
	member
	stringOf(user class)

	LDAP
	saveLdapConfig()
	loadLdapConfig()
	getUseLdap()
	setUseLdap()
	updateUserList()
	updateGroupList()

	LDAP Configuration
	findUserRDNFromName
	findUserRDNFromLoginName
	findGroupRDNFromName
	findUserInfoFromDN
	checkConnect
	checkDN

	LDAP server information
	getLdapServerName
	setLdapServerName(string)
	getPortNo
	setPortNo
	getDoorsBindNameDN
	setDoorsBindNameDN
	setDoorsBindPassword
	setDoorsBindPasswordDB
	getDoorsUserRoot
	setDoorsUserRoot
	getDoorsGroupRoot
	setDoorsGroupRoot
	getDoorsUserGroupDN
	setDoorsUserGroupDN
	getDoorsGroupGroupDN
	setDoorsGroupGroupDN

	LDAP data configuration
	getDoorsUsernameAttribute
	setDoorsUsernameAttribute
	getLoginNameAttribute
	setLoginNameAttribute
	getEmailAttribute
	setEmailAttribute
	getDescriptionAttribute
	setDescriptionAttribute
	getTelephoneAttribute
	setTelephoneAttribute
	getAddressAttribute
	setAddressAttribute
	getGroupObjectClass
	setGroupObjectClass
	getGroupMemberAttribute
	setGroupMemberAttribute
	getGroupNameAttribute
	setGroupNameAttribute
	Group and user properties
	string utf8(ansiString)
	string ansi(utf8String)

	Rational Directory Server
	getUseTelelogicDirectory
	setUseTelelogicDirectory
	getTDServerName
	setTDServerName
	getTDPortNo
	setTDPortNo
	getTDBindName
	setTDBindName
	setTDBindPassword
	setTDBindPassword
	getTDUseDirectoryPasswordPolicy
	setTDUseDirectoryPasswordPolicy
	getAdditionalAuthenticationEnabled
	getAdditionalAuthenticationPrompt
	getSystemLoginConformityRequired
	getCommandLinePasswordDisabled
	setCommandLinePasswordDisabled

	Rational DOORS hierarchy
	About the Rational DOORS hierarchy
	Item access controls
	canCreate(item)
	canControl(item)
	canRead(item)
	canModify(item)
	canDelete(item)

	Hierarchy clipboard
	clipCut
	clipCopy
	clipClear
	clipPaste
	clipUndo
	clipLastOp
	itemClipboardIsEmpty
	inClipboard

	Hierarchy information
	folder, project, module(state)
	description
	name(item)
	fullName(item)
	path(item)
	getParentFolder(item)
	getParentProject(item)
	isDeleted(item)
	setShowDeletedItems(bool)
	type
	uniqueID
	qualifiedUniqueID
	getReference
	itemFromReference

	Hierarchy manipulation
	delete(item)
	undelete(item)
	purge(item)
	move(item)
	rename(item)

	Items
	item(handle)
	itemFromID(handle)
	for item in folder
	for all items in folder
	for all items in project

	Folders
	Setting current folder
	current(folder)
	folder(handle)
	convertProjectToFolder
	convertFolderToProject
	create(folder)
	closeFolder

	Projects
	Setting current project
	current(project)
	project(handle)
	for project in database
	for all projects in database
	getInvalidCharInProjectName
	isDeleted(project name)
	isValidName
	create(Project)
	closeProject
	openProject
	doorsVersion

	Looping within projects

	Modules
	Module access controls
	canCreate(module)
	canControl(module)
	canModify(module)
	canDelete(module)

	Module references
	Setting current module
	current(module)
	module(handle)
	for module in database
	for open module in project
	for all modules in project
	for Module in Folder do

	Module information
	Module state
	version
	canRead, canWrite(module)
	getSelectedCol
	isRead, isEdit, isShare
	getInvalidCharInModuleName
	isValidDescription
	isValidName
	isValidPrefix
	isVisible

	Module manipulation
	create(formal module)
	create(descriptive module)
	create(link module)
	close(module)
	downgrade
	downgradeShare
	printModule
	read, edit, share(open module)
	save(module)
	copy(module)
	hardDelete(module)
	softDelete(module)
	formalStatus
	autoIndent

	Module display state
	level(module get)
	level(module set)
	Get display state
	Set display state
	refresh
	bringToFront

	Baselines
	baseline
	baselineExists
	create(baseline)
	delete(baseline)
	Get baseline data
	getMostRecentBaseline
	getInvalidCharInSuffix
	load
	nextMajor, nextMinor
	suffix
	for baseline in module
	Baselines example program
	module(handle)
	data(for ModuleVersion)
	load(ModuleVersion)
	moduleVersion(handle)
	isBaseline(ModuleVersion|Module)
	baselineInfo(current Module)
	baseline(ModuleVersion)
	baselineExists(ModuleVersion)
	name(ModuleVersion)
	fullName(ModuleVersion)
	versionString(ModuleVersion)
	delete(Baseline)
	getMostRecentBaseline(Module)

	Baseline Set Definition
	for BaselineSetDefinition in Folder
	for BaselineSetDefinition in ModName_
	create(BaselineSetDefinition)
	rename(BaselineSetDefinition)
	name(BaselineSetDefinition)
	setDescription(BaselineSetDefinition)
	description(BaselineSetDefinition)
	for module in BaselineSetDefinition
	addModule(BaselineSetDefinition)
	removeModule(BaseLineSetDefinition)
	delete(BaselineSetDefinition)
	lock(BaselineSetDefinition)
	unlock(BaselineSetDefinition)
	save(BaselineSetDefinition)
	read(BaselineSetDefinition)
	isanyBaselineSetOpen(BaselineSetDefinition)
	get(BaselineSetDefinition)
	inherited(BaselineSetDefinition)
	specific(BaselineSetDefinition)
	isAccessInherited(BaselineSetDefinition)
	set(BaselineSetDefinition)
	unset(BaselineSetDefinition)
	unsetAll(BaselineSetDefinition)
	for access record in Baseline Set Definition
	for access record in all Baseline Set Definition

	Baseline Sets
	for BaselineSet in BaselineSetDefinition
	isBaselinePresent(BaselineSet)
	create(Baseline Set)
	major(BaselineSet)
	minor(BaselineSet)
	suffix(BaselineSet)
	versionID(BaselineSet)
	annotation(BaselineSet)
	user(BaselineSet)
	dateOf(BaselineSet)
	isOpen(BaselineSet)
	close(baselineSet)
	setAnnotation(BaselineSet)
	addBaselines(BaselineSet)
	for ModuleVersion in BaselineSet
	for ModuleVersion in all BaselineSet
	for BaselineSet in ModName_
	baselineSet(ModuleVersion)

	History
	Constants (history type)
	Concatenation (history type)
	History properties
	goodStringOf
	stringOf(history type)
	print(history type)
	for history record in type
	number(history session)
	when
	who
	baseline(history session)
	diff(buffer)
	Link History
	lastModifiedTime
	for history session in module
	History example program

	Descriptive modules
	create(descriptive module)
	markUp
	undoMarkUp
	setUpExtraction
	extractAfter
	extractBelow

	Recently opened modules
	recentModules
	addRecentlyOpenModule(ModuleVersion)
	addRecentlyOpenModule(string)
	removeRecentlyOpenModule(ModuleVersion)
	for {string|ModuleVersion} in recentModules

	Module Properties
	ModuleProperties
	getProperties
	delete(ModuleProperties)
	find(attribute definition in ModuleProperties)
	for string in ModuleProperties
	for AttrType in ModuleProperties

	Electronic Signatures
	Signature types
	struct SignatureInfo {}
	struct SignatureEntry {}

	Controlling Electronic Signature ACL
	SignatureInfoSpecifier__ specifier(SignatureInfo)
	hasPermission(SignatureInfo, Permission)
	hasPermission(SignatureInfoSpecifier__, Permission)
	hasPermission(string, SignatureInfo, Permission)
	hasPermission(string, SignatureInfoSpecifier__, Permission)
	::do(AccessRec&, SignatureInfo, void)
	::do(AccessRec&, SignatureInfoSpecifier__, void)
	set(SignatureInfo, Permission, string name)
	set(SignatureInfoSpecifier__, Permission, string name)
	unset(SignatureInfo, string name)
	unset(SignatureInfoSpecifier__, string name)
	unsetAll(SignatureInfo)
	unsetAll(SignatureInfoSpecifer__)
	AccessRec get(SignatureInfo, string name, string& error)

	Electronic Signature Data Manipulation
	getSignatureInfo(SignatureInfo si&, ModName_ document, int major, int minor, string suffix)
	isBaselineSignatureConfigured(SignatureInfo)
	getLabelSpecifier(SignatureInfo)
	setLabelSpecifier(SignatureInfo si, string newLabel)
	appendSignatureEntry(SignatureInfo si, string label, string comment)
	save(SignatureInfo si, int &code)
	::do(SignatureEntry&, SignatureInfo, void)
	getUserName(SignatureEntry)
	getUserFullName
	getEmail(SignatureEntry)
	Date getDate(SignatureEntry)
	Date getLocalDate(SignatureEntry)
	getFormattedLocalDate(SignatureEntry)
	getLabel(SignatureEntry)
	getLabelOptions(SignatureEntry)
	getComment(SignatureEntry)
	allAttributesReadable(SignatureEntry)
	getIsValid(SignatureEntry)

	Examples
	Add a signature to the latest baseline of the current module
	list signatures in the latest baseline

	Objects
	About objects
	Object access controls
	canCreate(object)
	canControl(object)
	canRead(object)
	canModify(object)
	canDelete(object)
	canLock(object)
	canUnlock(object)

	Finding objects
	object(absno)
	all
	document
	entire
	module(containing object)
	top
	for object in all
	for object in entire
	for object in document
	for object in module
	for object in object
	for object in top

	Current object
	Setting current object
	current(object)

	Navigation from an object
	Specific object
	gotoObject
	Vertical navigation
	Horizontal navigation

	Object management
	create(object)
	move(object)
	canDelete
	flushDeletions
	hardDelete(object)
	sectionNeedsSaved
	softDelete(object)
	undelete(object)
	purgeObjects_
	purgeObject_

	Information about objects
	Object status
	getColumnBottom
	getColumnTop
	level(object get)
	identifier
	number

	Selecting objects
	getSelection
	setSelection
	deselect

	Object searching
	setSearchObject
	getSearchObject
	clearSearchObject
	highlightText
	getInPlaceColumnIndex

	Miscellaneous object functions
	inplaceEditing
	object
	Clipboard general functions
	splitHeadingAndText
	getCursorPosition

	Links
	About links and link module descriptors
	Link creation
	Link operators

	Link access control
	canDelete(link)

	Finding links
	for all outgoing links
	for all incoming links
	for each incoming link
	for all sources
	for each source
	for all source references
	for each source reference
	for all link references
	for link module descriptor in folder

	Versioned links
	for all outgoing links
	for all incoming links
	for all source links
	for all source link references
	sourceVersion
	targetVersion
	echoed outlinks
	echoed inlinks
	getSourceVersion(Linkset)

	Link management
	addLinkModuleDescriptor
	removeLinkModuleDescriptor
	setLinkModuleDescriptorsExclusive
	getLinkModuleDescriptorsExclusive
	getDescription
	getName
	getSourceName
	getTargetName
	getOverridable
	setOverridable
	getMandatory
	setMandatory
	delete(link)
	module(link)
	source
	sourceAbsNo
	target
	targetAbsNo

	Default link module
	getDefaultLinkModule
	setDefaultLinkModule

	Linksets
	create(linkset)
	delete(linkset)
	getSource getTarget
	linkset
	load
	setSource, setTarget
	side1
	side2
	unload
	getTargetModule

	External Links
	ExternalLink
	ExternalLinkDirection
	ExternalLinkBehavior
	ExternalLink current
	create(external link)
	canDelete(external link)
	source
	for all outgoing external links
	for all incoming external links
	for all incoming and outgoing external links

	OSLC Link Discovery
	getCachedExternalLinkLifeTime
	setCachedExternalLinkLifeTime
	discoverLinks
	linksDiscovered
	discoverLinksForViews
	linksDiscoveredForViews
	discoverLinksForViewsAsync
	discoverLinksAsync

	Rational DOORS URLs
	getURL and getResourceURL
	decodeURL
	getlegacyURL
	validateDOORSURL
	isDefaultURL
	getResourceURL
	getResourceURLConfigOptions
	decodeResourceURL

	Attributes
	Attribute values
	maximumAttributeLength
	Attribute value extraction
	Concatenation (attribute)
	Assignment (from attribute)
	Assignment (to attribute)
	canRead, canWrite(attribute)
	type(attribute)
	for module attributes in module
	for object attributes in module
	unicodeString
	getBoundedUnicode

	Attribute value access controls
	canCreate(attribute)
	canControl(attribute)
	canModify(attribute)
	canDelete(attribute)

	Multi-value enumerated attributes
	Assignment (enumerated option)
	isMember

	Attribute definitions
	Attribute definition properties
	Concatenation (attribute definition)
	create(attribute definition)
	delete(attribute definition)
	exists
	find(attribute definition)
	attributeValue
	isAttributeValueInRange
	getBoundedAttr
	hasSpecificValue
	isVisibleAttribute
	modify(attribute definition)
	for attribute definition in module
	for module level attribute definition in {Module|ModuleProperties}
	Attribute definition example program

	Attribute definition access controls
	canCreateDef
	canCreateVal
	canControlDef
	canControlVal
	canDeleteDef
	canDeleteVal
	canCreateAttrDefs

	Attribute types
	Attribute type properties
	Concatenation (attribute base type)
	find(attribute type)
	isRanged
	isUsed
	print(attribute base type)
	stringOf(attribute base type)
	getRealColorOptionForTypes
	setRealColorOptionForTypes
	setDescription
	setURI
	getURI
	for attribute type in module

	Attribute type access controls
	canCreate(attribute type)
	canControl(attribute type)
	canModify(attribute type)
	canRead(attribute type)
	canDelete(attribute type)
	canCreateAttrTypes

	Attribute type manipulation
	create(attribute type)
	delete(attribute type)
	modify(attribute type)
	setMaxValue
	setMinValue

	DXL attribute
	attrDXLName
	DXL attribute example program

	Access controls
	Controlling access
	Properties
	Operators
	Access status
	partition
	get, getDef, getVal
	getImplied
	inherited, inheritedDef, inheritedVal
	isAccessInherited
	isDefault
	set, setDef, setVal
	setImplied
	specific, specificDef, specificVal
	unset, unsetDef, unsetVal, unsetAll
	username
	for access record in type
	for access record in all type
	for access record in values

	Locking
	isLockedByUser
	lock(object)
	Unlock object functions

	Example programs
	Setting access control example
	Reporting access control example

	Dialog boxes
	Icons
	Constants
	load
	destroy(icon)

	Message boxes
	acknowledge
	errorBox
	infoBox
	warningBox
	confirm
	query
	messageBox

	Dialog box functions
	addAcceleratorKey
	baseWin
	block
	busy
	centered
	create(dialog box)
	createButtonBar
	createItem
	createCombo
	destroy(dialog box)
	getPos
	getSize
	getTitle
	getBorderSize
	getCaptionHeight
	help, gluedHelp
	hide(dialog box)
	raise
	setFocus
	ready
	realize(pending)
	realize(show)
	release
	show(dialog box)
	showing
	getParent
	setParent
	setPos
	setCenteredSize
	setSize
	setTitle
	setBaseWindowContext
	startConfiguringMenus
	stopConfiguringMenus
	topMost
	hasFocus
	setDXLWindowAsParent
	minimumSize

	Dialog box elements
	Common element operations
	addMenu
	active
	inactive
	hide
	setGotFocus
	setLostFocus
	show(element)
	delete(option or item)
	delete(item in tree view)
	empty
	insert(option or item)
	insert(item in list view)
	insert(item in tree view)
	noElems
	select(element)
	selected(element)
	selected(item)
	get(element or option)
	setTextChangeCB
	toolBarEditGetString
	get(selected text)
	set(value or selection)
	set(selected status)
	set(choice element values)
	set(item value)
	set(status bar message)
	set(file selector)
	set(icon)
	set(select)
	set(key or mouse callback)
	set(select and activate)
	set(list view callback)
	set(select, deselect, and activate)
	set(sort function)
	set(tree view expand)
	setFocus
	getBuffer(DBE)
	setFromBuffer(DBE, Buffer)
	useRTFColour

	Simple elements for dialog boxes
	label
	separator(dialog box)
	splitter
	frame
	fileName
	field
	richField
	slider
	checkBox
	radioBox
	toggle
	date
	setLimits
	getDate
	set
	get
	getBuffer
	setFromBuffer

	Choice dialog box elements
	choice
	tab
	list
	multiList
	selectedElems
	for value in list (selected items)
	for position in list (selected items)

	View elements
	Drag-and-drop
	listView
	deleteColumn
	insertColumn(list view)
	getColumnValue
	getCheck
	setCheck
	getSortColumn
	setSortColumn
	treeView
	exists(tree view)
	layoutDXL
	attributeDXL
	getDXLFileHelp, getDXLFileName
	templates
	getTemplateFileName
	for value in list view (selected items)
	for position in list view (selected items)

	Text editor elements
	text(box)
	richText(box)
	home
	modified
	get(selected text)

	Buttons
	ok
	apply
	close
	button
	ok, apply, button(arrows)

	Canvases
	Keyboard event constants
	canvas
	background
	realBackground
	color
	realColor
	font
	height
	width
	rectangle
	box
	line
	ellipse
	draw
	drawAngle
	polarLine
	polygon
	bitmap
	loadBitmap
	drawBitmap
	destroyBitmap
	export
	print
	startPrintJob, endPrintJob

	Complex canvases
	In-place editing
	hasInPlace
	inPlaceMove
	inPlaceShow
	inPlaceChoiceAdd
	inPlaceCut, inPlaceCopy, inPlacePaste
	inPlaceGet
	inPlaceSet
	inPlaceReset
	inPlaceTextHeight
	addToolTip
	clearToolTips
	hasHeader
	headerAddColumn
	headerChange
	headerRemoveColumn
	headerReset
	headerSelect
	headerSetHighlight
	headerShow
	hasScrollbars
	scrollSet
	menuBar
	statusBar
	Menus, status bar and tool bars example

	Toolbars
	toolBar
	updateToolBars
	toolBarComboGetSelection
	toolBarComboGetItem
	toolBarComboSelect
	toolBarComboCount
	toolBarComboEmpty
	toolBarComboAdd
	toolBarComboInsert
	toolBarComboDelete
	toolBarVisible
	toolBarMove
	toolBarShow
	createEditableCombo
	toolBarComboGetEditBoxSelection
	toolBarComboCutCopySelectedText
	toolBarComboPasteText

	Colors
	Logical colors
	Actual colors
	Real colors
	getLogicalColorName
	getRealColor
	getRealColorIcon
	getRealColorName
	setRealColor

	Simple placement
	beside
	below(element)
	left
	leftAligned
	right
	opposite
	full
	stacked

	Constrained placement
	Constrained placement basics
	Attachment placement
	Worked example
	Constrained placement full example program

	Progress bar
	progressStart
	progressStartDisableCancel
	progressStep
	progressMessage
	progressRange
	progressCancelled
	progressStop
	Progress bar example

	DBE resizing
	setExtraWidthShare(DBE)
	setExtraHeightShare(DBE)

	HTML Control
	htmlView
	set(html callback)
	set(html URL)
	setURL
	getURL
	get(HTML view)
	get(HTML frame)
	set(HTML view)
	setHTML
	getHTML
	getBuffer
	getInnerText
	setInnerText
	getInnerHTML
	setInnerHTML
	getAttribute
	setAttribute
	Example

	HTML Edit Control
	htmlEdit
	htmlBuffer
	set(HTML edit)
	Example

	Templates
	Template functions
	template
	instance

	Template expressions
	Operators

	Rational DOORS window control
	The DXL Library and Addins menus
	Library description file format
	Menu index file format
	Menu DXL file format
	Alternative Addins Location

	Module status bars
	status
	menuStatus
	updateToolBars

	Rational DOORS built-in windows
	window
	show (window)
	hide
	Specific windows

	Module menus
	Standard menus and submenus
	Standard items
	Standard combo box controls
	createMenu
	createButtonBar
	createItem
	createCombo
	createEditableCombo
	createPopup
	separator(menu)
	end(menu, button bar, popup)

	Display control
	Filters
	attribute(value)
	column(value)
	Attribute comparison
	accept
	addFilter
	contents
	contains
	excludeCurrent
	excludeLeaves
	filterTables
	getSimpleFilterType_
	getAttributeFilterSettings_
	getLinkFilterSettings_
	getObjectFilterSettings_
	getColumnFilterSettings_
	includeCurrent
	includeLeaves
	hasLinks
	hasNoLinks
	isNull
	notNull
	reject
	set(filter)
	stringOf(filter)
	ancestors(show/hide)
	ancestors(state)
	applyFiltering
	unApplyFiltering
	applyingFiltering
	Filters example program

	Compound filters
	getCompoundFilterType_
	getComponentFilter_

	Filtering on multi-valued attributes
	includes
	excludes

	Sorting modules
	ascending
	descending
	Compound sort
	set(sort)
	sorting
	stringOf(sort)
	isAscending
	isDescending
	for sort in sort
	destroySort
	Sorting example program

	Views
	currentView
	descendants(show/hide)
	descendants(state)
	view
	delete(view)
	setPreloadedView
	preloadedView
	isinheritedView
	isValidName
	linkIndicators(show/hide)
	linkIndicators(state)
	load
	name(view)
	next, previous(filtered)
	clearDefaultViewForModule
	clearDefaultViewForUser
	getDefaultViewForModule
	getDefaultViewForUser
	save(view)
	setDefaultViewForModule
	setDefaultViewForUser
	showDeletedObjects(get)
	showDeletedObjects(show/hide)
	showChangeBars(get)
	showChangeBars(show/hide)
	showGraphicsDatatips(get)
	showGraphicsDatatips(show/hide)
	showGraphicsLinks(get)
	showGraphicsLinks(show/hide)
	showingExplorer
	showExplorer, hideExplorer
	showPrintDialogs(get)
	showPrintDialogs(set)
	for view in module
	canInheritView
	clearInvalidInheritanceOf
	invalidInheritedView
	setViewDescription
	getViewDescription
	for View in View

	View access controls
	canCreate(view)
	canControl(view)
	canRead(view)
	canModify(view)
	canDelete(view)
	canWrite(view)
	Views example program

	View definitions
	create(view definition)
	createPrivate
	createPublic
	get(view definition)
	change(view definition)
	delete(view definition)
	save(view definition)
	useAncestors(get and set)
	useDescendants(get and set)
	useCurrent(get and set)
	useSelection(get and set)
	useColumns(get and set)
	useFilterTables(get and set)
	useGraphicsColumn(get and set)
	useShowExplorer(get and set)
	useGraphics(get and set)
	useOutlining(get and set)
	useCompression(get and set)
	useLevel(get and set)
	useSorting(get and set)
	useFiltering(get and set)
	useShowDeleted(get and set)
	useShowPictures(get and set)
	useShowTables(get and set)
	useShowLinkIndicators(get and set)
	useShowLinks(get and set)
	useTooltipColumn(get and set)
	useWindows(get and set)
	useAutoIndentation

	Columns
	column
	Column alignment constants
	attribute(in column)
	attrName
	color(get)
	color(set)
	backgroundColor(get)
	backgroundColor(set)
	delete(column)
	dxl(get)
	dxl(set)
	graphics(get)
	graphics(set)
	info(get)
	info(set)
	insert(column in module)
	justify(get alignment)
	justify(set alignment)
	main(get)
	main(set)
	link(get)
	link(set)
	changebar(get)
	changebar(set)
	text(column)
	title(get)
	title(set)
	width(get)
	width(set)
	currentColumn(get)
	for columns in module

	Scrolling functions
	scroll

	Layout DXL
	Layout context
	display
	displayRich
	displayRichWithColo[u]r
	getCanvas
	hasPicture/exportPicture
	isFirstObjectInDXLSet(Object)
	isLastObjectInDXLSet(Object)
	setRefreshDelta
	getRefreshDelta
	setManualRefresh
	isManualRefresh

	Partitions
	Partition concepts
	Partition definition management
	create(partition definition)
	delete(partition definition)
	dispose(partition definition)
	copy(partition definition)
	rename(partition definition)
	load(partition definition)
	loadInPartitionDef
	save(partition definition)
	saveModified(partition definition)
	setDescription(partition definition)

	Partition definition contents
	addModule, addLinkModule
	addAwayModule, addAwayLinkModule
	findModule
	findLinkset
	findAttribute
	findView
	addAttribute, addAwayAttribute
	addLinkset, addAwayLinkset
	addView, addAwayView
	removeModule
	removeAttribute
	removeLinkset
	removeView
	allowsAccess
	setAccess
	for partition module in partition definition
	for partition attribute in partition module
	for partition view in partition module

	Partition management
	apply(partition definition)
	open(partition file)
	close(partition file)
	acceptReport
	acceptPartition
	returnPartition
	rejoinReport
	rejoinPartition
	removePartition

	Partition information
	Partition properties
	Partition definition properties
	Partition module properties
	Partition attribute properties
	Partition view properties
	Partition file properties
	Out-partition properties
	In-partition properties
	for in-partition in project
	for out-partition in project
	for partition definition in project

	Partition access
	isPartitionedOut, isPartitionedOutDef, isPartitionedOutVal
	getPartitionMask, getPartitionMaskDef, getPartitionMaskVal

	Requirements Interchange Format (RIF)
	RIF export
	exportType
	exportPackage

	RIF import
	importRifFile
	RifImport

	RIF ID
	getRifID
	getObjectByRifID

	Merge
	rifMerge

	RIF definition
	RifDefinition
	RifModuleDefinition
	DdcMode constants
	for RifDefinition in Project
	for RifModuleDefinition in RifDefinition
	for RifImport in RifDefinition

	Examples
	Example 1
	Example 2

	OLE objects
	Embedded OLE objects and the OLE clipboard
	oleActivate
	oleDeactivate
	oleCopy
	oleCut
	oleDelete
	oleInsert
	oleInsert (insert to buffer)
	oleIsObject
	oleCloseAutoObject
	oleCloseAutoObject
	oleRTF
	olePaste
	olePasteSpecial
	olePasteLink
	oleSaveBitmap
	oleCount
	isOleObjectSelected
	showOlePropertiesDialog
	containsOle

	OLE information functions
	getOleWidthHeight
	oleSetMaxWidth
	oleSetMinWidth
	oleSetHeightandWidth
	oleResetSize

	Picture object support
	Constants
	changePicture
	copyPictureObject
	deletePicture
	exportPicture
	exportPicture
	getPictBB
	getPictFormat
	getPictName
	getPictWidthHeight
	importPicture
	insertBitmapFromClipboard
	saveClipboardBitmapToFile
	insertPictureAfter
	insertPictureBelow
	insertPictureFile
	insertPictureFileAfter
	insertPictureFileBelow
	oleLoadBitmap
	openPictFile
	pictureCopy
	reimportPicture
	for pictures in project
	supportedPictureFormat
	pictureCompatible

	Automation client support
	oleGetResult
	oleSetResult
	oleCreateAutoObject
	oleGetAutoObject
	oleGet
	olePut
	create(OleAutoArgs)
	delete(OleAutoArgs)
	clear(OleAutoArgs)
	put(OleAutoArgs)
	oleMethod

	Controlling Rational DOORS from applications that support automation
	Automation interface
	runFile
	runStr

	Triggers
	Introduction to triggers
	Basic trigger events
	Trigger scope
	Trigger events
	Trigger priority
	Persistent versus dynamic triggers

	Trigger constants
	levels
	level modifiers
	event types
	event names

	Trigger definition
	Trigger level assembly
	trigger(persistent)
	trigger(dynamic)
	delete(trigger)

	Trigger manipulation
	for trigger in database
	for trigger in project
	for trigger in module
	level, type, event(trigger)
	stringOf(trigger)
	attribute(trigger)
	attrdef(trigger)
	current(trigger)
	dxl(trigger)
	kind
	levelModifier
	name(trigger)
	object(trigger)
	module
	version
	link
	value
	priority
	trigger status
	set(trigger status)
	stored
	scope
	value
	Triggers review

	Drag-and-drop trigger functions
	createDropCallback
	registeredFormat
	dropDataAvailable
	droppedString
	droppedAttrTextAvailable
	droppedAttributeText
	droppedAttrRichTextAvailable
	droppedAttributeRichText
	droppedAttrOLETextAvailable
	droppedAttributeOLEText
	draggedObjects
	droppedList
	setDropString
	setDropList
	insertDroppedPicture
	saveDroppedPicture

	Page setup functions
	Page attributes status
	Get page properties status
	Set page properties status

	Page dimensions
	Get page dimension
	Set page dimension

	Document attributes
	pageBreakLevel, pageTOCLevel(get)
	pageBreakLevel, pageTOCLevel(set)
	pageHeaderFooter(get)
	pageHeaderFooter(set)
	pageExpandHF

	Page setup information
	Setting current page setup
	current(page setup)
	pageColumns, pageFormat(get)
	pageColumns, pageFormat(set)
	pageTitlePage
	pageSignaturePage
	pageIncludeFilters
	pageIncludeSort

	Page setup management
	create
	delete
	isValidName
	pageLayout
	pageName
	save(page setup)
	for setup name in setups

	Tables
	Table concept
	Table constants
	Table management
	table(create)
	table
	row
	cell
	tableContents(get)
	tableContents(set)
	deleteCell, deleteColumn, deleteRow, deleteTable
	undeleteCell, undeleteColumn, undeleteRow, undeleteTable
	for row in table
	for cell in row

	Table manipulation
	appendCell
	appendColumn(table)
	appendRow
	insertCell
	insertColumn(table)
	insertRow
	getTable
	getRow
	getCellAlignment
	getCellWidth
	getCellShowChangeBars
	getCellShowLinkArrows
	getShowTableAcrossModule
	setAllCellsAlignment
	setAllCellsBorder
	setAllCellsShowChangeBars
	setAllCellsShowLinkArrows
	setAllCellsWidth
	setCellAlignment
	setCellBorder
	setCellShowChangeBars
	setCellShowLinkArrows
	setCellWidth
	setColumnAlignment
	setColumnShowChangeBars
	setColumnShowLinkArrows
	setColumnWidth
	setRowWidth
	setShowTableAcrossModule
	toTable

	Table attributes
	useDefaultTableAttribute
	enableDefaultTableAttribute
	overrideTableAttribute
	defaultTableAttribute

	Rich text
	Rich text processing
	Rich text tags
	Rich text constructors
	richText(column)
	richTextWithOle(column)
	richTextWithOleNoCache(column)
	richTextNoOle(column)
	removeUnlistedRichText
	for rich text in string
	RichTextParagraph type properties
	RichText type properties

	Rich text strings
	Assignment (rich text)
	cutRichText
	findRichText
	isRichText
	replaceRichText
	richtext_identifier(Object)
	pasteToEditbox
	richClip
	setRichClip
	setRichClip(Buffer/RTF_string__)
	rtfSubString
	richText(of attribute)
	richText(of string)
	string exportAttributeToFile
	stringOf(rich text)
	richTextWithOle
	richTextWithOleNoCache
	richTextNoOle
	applyTextFormattingToParagraph
	exportRTFString
	richTextFragment

	Enhanced character support
	Character set constants
	Character set identification
	charsetDefault
	characterSet
	fontTable

	Importing rich text
	importRTF

	Diagnostic perms
	enableObjectTextAssignmentWarnings
	disableObjectTextAssignmentWarnings
	enableObjectTextRichTextWarnings
	disableObjectTextRichTextWarnings
	enableGeneralRichTextWarnings
	disableGeneralRichTextWarnings
	enableRepeatWarnings
	disableRepeatWarnings
	disableDisplayWarnings
	enableDisplayWarnings
	dxlWarningFilename
	dxlWarningLineNumber

	Spelling Checker
	Constants and general functions
	Language Constants
	Options Constants
	Dictionary Constants
	Grammar Constants
	Spell Check Mode Constants
	spell
	spellFix
	alternative
	alternatives
	for all spellings
	spell
	getNextError
	SpellingErrors__
	for SpellingError in SpellingErrors__
	getErrorString
	getErrorStartPos(SpellingError)
	getErrorStopPos(SpellingError)
	getSentenceStartPos(SpellingError)
	getSentenceStopPos(SpellingError)
	getCorrectionComplete(SpellingError)
	ignoreWord
	for Buffer in SpellingAlternatives__
	alternative

	Language and Grammar
	Languages__
	Language
	spGetLanguages
	for Language in Languages__
	getLanguage
	getId
	getName
	isSupported
	getGrammarRules
	getName
	getExplanation
	getOptions
	save(SpellingOptions)
	getLanguage
	setLanguage
	getEnglishOptions
	setEnglishOptions
	getUKOptions
	setUKOptions
	getFrenchOptions
	setFrenchOptions
	getGermanOptions
	setGermanOptions
	getGreekOptions
	setGreekOptions
	getSpanishOptions
	setSpanishOptions
	getCatalanOptions
	setCatalanOptions
	getRussianOptions
	setRussianOptions
	getGrammarLevel
	setGrammarLevel
	setSpellingCheckingMode
	getSpellingCheckingMode
	getSpellingFirst
	setSpellingFirst
	getIgnoreReadOnly
	setIgnoreReadOnly

	Spelling Dictionary
	Dictionary
	open(Dictionary)
	close(Dictionary)
	alternativeWord
	for Buffer in Dictionary
	for alternativeWord in Dictionary
	getWord
	getAlternative
	insert
	remove
	isDatabaseDict

	Miscellaneous Spelling
	anagram
	wildcard

	Spelling\Dictionary Examples

	Database Integrity Checker
	Database Integrity Types
	IntegrityResultsData
	IntegrityCheckItem
	IntegrityProblem
	ProblemItem
	IntegrityItemType

	Database Integrity Perms
	checkDatabaseIntegrity(Folder&, IntegrityResultsData&)
	checkFolderIntegrity(Folder, IntegrityResultsData& , bool)
	canceled/cancelled(IntegrityResultsData)
	for IntegrityCheckItem in IntegrityResultsData
	for ProblemItem in IntegrityResultsData
	for IntegrityProblem in ProblemItem
	for IntegrityProblem in IntegrityResultsData
	uniqueID(IntegrityCheckItem)
	uniqueID(IntegrityProblem)
	uniqueID(ProblemItem)
	problems(IntegrityResultsData, string)
	timestamp(IntegrityCheckItem)
	folder(IntegrityProblem)
	type(IntegrityCheckItem)
	type(IntegrityProblem)
	type(ProblemItem)
	text(IntegrityCheckItem)
	parentRefID(IntegrityProblem | ProblemItem)
	parentRef(IntegrityProblem | ProblemItem)
	setParent(ProblemItem, Folder)
	addProjectEntry(ProblemItem)
	convertToFolder(ProblemItem)
	repaired(IntegrityProblem)
	repaired(ProblemItem)
	delete(IntegrityResultsData&)
	checkItem(IntegrityProblem)
	everSectioned

	Discussions
	Discussion Types
	Discussion
	Comment
	DiscussionStatus

	Properties
	Discussion
	Comment

	Iterators
	for Discussion in Type
	for Comment in Discussion

	Operations
	create(Discussion)
	addComment
	closeDiscussion
	reopenDiscussion
	deleteDiscussion
	sortDiscussions
	getDiscussions
	getObjectDiscussions
	getComments
	mayModifyDiscussionStatus
	baselineIndex
	isDiscussionColumn
	setDiscussionColumn

	Triggers
	comment
	discussion
	dispose(Discussion/Comment)

	Discussions access controls
	canModifyDiscussions
	canEveryoneModifyDiscussions
	addUser
	addGroup
	removeUser
	removeGroup
	saveDiscussionAccessList

	Example

	General functions
	Error handling
	error
	lastError
	noError
	unixerror
	warn
	dxlHere()

	Archive and restore
	Archive properties
	for archive item in archive
	archive(modules and projects)
	archive(user list)
	archiveFiles
	getArchiveType
	getModuleDetails
	getProjectDetails
	getUserlistDetails
	restore(archive)
	restoreModule
	restoreFiles
	restoreProject
	restoreUserlist
	select(archive item)
	deselect(archive item)
	rename(archive item)
	get(archive data)
	canCreateServerArchive
	canRestoreServerArchive
	canReadServerArchiveFile
	canWriteServerArchiveFile
	canUseServerArchive

	Checksum validation
	createChecksumFile
	loadChecksumFile
	compareChecksumFile

	Locking
	Lock properties
	getLocksInDatabase
	getLocksInFolder
	getLocksInModule
	isLocked
	isLockedClosed
	isLockedByUser
	lock(module)
	lock(object)
	unlock(module)
	delete(lock list)
	remove(lock)
	shareLock
	for lock in lock list
	Unlock object functions
	requestLock

	HTML functions
	htmlText
	setAttrFromHTML

	HTTP Server
	HttpRequest
	HttpRequest(timeout)
	HttpRequest(error message)
	HttpRequest(timeout and error message)
	HttpVerb
	HttpResponse
	HttpHeader
	HttpHeaderEntry
	HttpBody

	Asynchronous HTTP requests
	Future HttpRequest

	OSLC DXL Services
	OSLCDXLService properties
	setDxlServiceResult
	addOrUpdateOSLCDXLService
	removeOSLCDXLService(string key)
	removeOSLCDXLService(OSLCDXLService service)

	Broadcast Messaging
	sendBroadcastMessage

	Converting a symbol character to Unicode
	symbolToUnicode

	Timer
	timer
	stopTimer
	startTimer
	isTimer
	getTimerName
	getTimerInterval
	getTimerID
	getTimerRunning

	Symbol character mapping
	getFontList
	getMappedCode
	getMappedCodes
	updateMappedCodes

	Character codes and their meanings
	Notices
	Trademarks

	Index

